
Tournament Selection,

Niching,

and the Preservation of Diversity

Christopher K. Oei

David E. Goldberg,

Shau-Jin Chang

University of Illinois at Urbana-Champaign

Urbana, IL 61801

IlliGAL Report No. 91011

December 1991

Illinois Genetic Algorithms Laboratory

Department of General Engineering

University of Illinois at Urbana-Champaign

117 Transportation Building

104 South Mathews Avenue

Urbana, Illinois 61801



Tournament Selection,

Niching,

and the Preservation of Diversity

Christopher K. Oei, David E. Goldberg, & Shau-Jin Chang

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

This article examines the possibility of combining tournament selection with the method of

sharing in an attempt to create another selection scheme that can stably maintain multiple niches

in genetic algorithms (GAs). Initial e�orts have con�rmed the previous observation that the naive

combination of these two techniques fails because the rescaling of sharing and the autoscaling of

tournament selection �ght one another. This paper demonstrates empirically and analytically that

the dynamics of the naive combination are chaotic and result in a rapid loss of the number of

niches that can be supported over time. The paper also shows that when tournament selection is

used with a modi�ed form of sharing that is continuously updated in the target population, the

dynamics become stable and the resulting selection scheme is able to promote and maintain multiple

subpopulations over many generations, virtually without loss. Further investigation is necessary, but

this new scheme, tournament selection with continuously updated sharing, is ready for trial in those

GAs where reliable niching is a must.

1 Introduction

Among selection schemes commonly used in genetic algorithms (GAs), tournament selection has a num-

ber of advantages (Goldberg & Deb, 1991): (1) it often involves only local pairwise or k-way interactions

between individuals, (2) it naturally and inexpensively implements a means of obtaining rank-based

selection (Baker, 1985), and (3) it can be performed so that the noise of selection is minimized and can

be all but forgotten in the sizing of populations (Goldberg, Deb, & Clark, 1991). On the other hand,

in its simplest form, tournament selection implements a simple or purely competitive selection scheme,

relentlessly driving the population toward the best. In problems with solution sets of cardinality greater

than one, in multimodal problems, and in classi�er systems and other genetics-based machine learning

systems, it is desirable to adopt selection schemes that preserve multiple solutions, thereby promoting

a representative covering of solution structures. Among the most widely used of such niching schemes

is the method of sharing functions (Deb, 1989; Deb & Goldberg, 1989; Goldberg & Richardson, 1987),

but it has been observed (K. Deb, personal communication, 1989) that when sharing is used naively

with tournament selection, the autoscaling of the tournament and the imposed scaling of the sharing

mechanism �ght one another. The lack of success with the naive combination of sharing and tournament

selection has led to the development of so-called Boltzmann tournament selection (BMTS) (Goldberg,

1990) that combines tournament selection with the Boltzmann distribution widely used in simulated

annealing, but an appendix to this paper casts doubt upon BMTS's ability to stably maintain large

number of niches at high temperatures, and the development of an entirely reliable, tournament-based

scheme of niched selection has remained an open research direction.

In this paper, we concentrate on (1) understanding why the naive combination of tournament selection

and sharing doesn't work and (2) devising a modi�ed tournament-sharing scheme that permits stable

niching. Speci�cally, we �nd that the naive combination of sharing and tournament selection has chaotic

dynamics and that this leads to a rapid decline in the number of niches that a population of given size

1



can support. We �nd when we perform sharing continuously over the target rather than the present

population that this di�culty is corrected. In other words, tournament selection with continuously

updated sharing promotes stable niching in �nite populations. Further experimentation in practical

problems is required, but the technique is ready for trial in problems where stable niching is a must. We

suggest a number of ways to generalize and improve the technique, including the use of sampled sharing

and the use of a niching threshold.

In the remainder, we �rst examine the chaotic dynamics of the naive combination of sharing and

binary tournament selection and show how these lead to a rapid decline in the number of niches that

can be sustained over time. We then show how the use of continuously updated sharing overcomes this

di�culty and promotes a stable scheme. Extensions to the method are then discussed. A brief appendix

contains an analysis of unimpeded genetic drift and explores its rami�cations for unmodi�ed Boltzmann

tournament selection.

e aive o ination of ourna ents and arin

In this section, we assume that binary tournament selection operates on a shared �tness value calculated

using an appropriate sharing function over the current population as described elsewhere (Deb, 1989;

Deb & Goldberg, 1989; Goldberg & Richardson, 1987). We consider the dynamics of the two-niche case

�rst and then consider the mean-�eld dynamics in the multiple-niche setting. The results show that the

naive combination is unsuitable for practical applications, because the detailed dynamics are chaotic and

because the mean-�eld performance exhibits a steady decline in the number of niches the population

can support.

2.1 Chaotic dynamics of the naive combination

Intuitively, we might expect to have di�culty when we combine tournament selection with sharing.

Tournament selection by itself imposes a form of ranking on the members of a population, rewarding

even the smallest di�erences in �tness with greater numbers in the target population. On the other

hand, sharing is trying to adjust the number of individuals in the target population in proportion to

their absolute �tness level. In theory, if sharing worked perfectly, the population should stabilize at

niche sizes that make the shared �tness equal among the niches, but sharing does not work perfectly,

and the accentuation of even the smallest|and largely insigni�cant|di�erences by the action of the

tournament should cause the population to careem about.

To put this in more mathematical terms, consider the following two-niche model, concretely imagined

using a population of single-bit strings, each with equal �tness. Sharing makes the subpopulation with

the least number of members the most �t, after the sharing is taken into account. Let n be the number

of 1's in the population, which is of size . Then the time evolution of the system is given by the

following:

n

+

=

n

2

for n 2;

n

2

2

( �n)n

for n 2:

(1)

where n

+

is the number of 1's in the next generation. It is easier to see what is happening if we look at

the ratio of the number of 1's to the total population: = n . The evolution becomes

+

=

for 1 2;

� 2 for 1 2:

(2)

If sharing works, then = 1 2 should be a stable �xed point of this mapping. Notice, however, that the

mapping is actually discontinuous at = 1 2. If we start with almost the same number of 0's as 1's,

with slightly more 1's, then in a single generation the ratio would jump to 3:1 in favor of the 0's. The

method of sharing overcompensates and overshoots the equilibrium.

The system has two unstable �xed points of order 1 at 0 and 1, and two unstable �xed points of

order 2 at

�

2

and

2

�

. In fact, since the slope of the mapping is always greater than 1, there

2



are no stable �xed points anywhere and thus the trajectory of the system is always aperiodic. We have

veri�ed numerically that the system is in fact chaotic with a Lyapunov exponent of about 0:21.

If we think of the system in terms of control theory, what we are trying to do is to control a system

that would, if left by itself, drift away from the desired equilibrium. In this case, our controlling force is

too strong, and the one-generation time lag between the measurement of the system and the application

of the control causes the controlled system to overshoot the equilibrium, causing feedback and chaos.

We will use this point of view to correct the situation later in this paper.

2.2 ean- eld analysis of multiple niches

Actually, the fact that the system is chaotic does not really tell us that the method of sharing does not

work in this context. In order to show that the naive combination of sharing and tournament selection

fails, we must estimate the rate of loss of genetic diversity, and to do this, we will use a more involved

model. Instead of thinking of two subpopulations, we will consider a system with many subpopulations

and assume that what happens in one subpopulation does not directly a�ect what happens in another

population. This model is similar to the mean-�eld theory that is often used to describe the behavior of

physical systems. Let us assume we have a large population of size with k sub-populations at time

= 0. Again we will take all the �tness values to be equal.

Let (k ) be the number of individuals at time in the -th niche, where the niches are sorted

according to their sizes, and k = k( ) is the number of niches remaining at time . The largest niche

will have (k k ) members and the smallest niche will have (k 1 ) members. What we expect is that

for large k, the system will quickly collapse onto a slow manifold that does not depend on the initial

conditions except for the value of and k . Let us work in the rescaled population distribution:

( k ) =

k

(k ): (3)

What we are guessing is that as time progresses, the system loses more and more niches, but the rescaled

population distribution remains unchanged. If such a quasi-steady-state solution exists, it is given by

( ) = lim ( ): (4)

So if our quasi-steady-state assumption holds, when we have a large number of niches (k 1) and

evolution has taken place for a while ( 1), (k ) follows a simple scaling law:

(k )

k

( k): (5)

We have veri�ed this scaling law numerically. It turns out that it is possible to solve for this quasi-

steady-state solution, analytically. The key is to postulate the existence of a solution ( ) that is

symmetric about = 1 2 after the tournament reproduction phase; that is, the most endangered niches

remain highly endangered, the most populated niches become endangered, and the niches in between the

extremes remain about the same. Numerical studies have pointed out this symmetry, and using these

assumptions, we can write the time evolution of the system as follows.

Since all the �tness values have been assumed to be equal, the outcome of the tournaments depends

only on how many individuals are in the niches. Let be the rescaled population distribution after the

tournament phase. Since the niches are ranked according to their sizes, we can take the expectation:

( ) = 2 ( ) ( ) : (6)

After the tournament phase, some of the niches that were heavily populated are no longer heavily

populated, and some of the niches that were endangered are no longer endangered. This means that we

must sort the niches again according to their new sizes. Ordinarily, this would be extremely di�cult to

do analytically, but because the solution is symmetric by assumption, the sorting phase is given by

( ) = ( 2 ): (7)

3



20 40 60 80 100

Niche population vs. Rank (Predicted vs. Mean Field)

0.0025

0.005

0.0075

0.01

0.0125

0.015

Figure 1: Continuum and mean �eld calculations agree when compared on the basis of distribution of

niche proportion.

Now we just renormalize the probability distribution so that the integral is unity:

( 1) = ( ): (8)

We can write the time evolution of the system as an operator equation:

( 1) = ( ) (9)

where the operator is given as follows:

( ) = ( ) ( ) ; (10)

( ) = ( 2) ( ) : (11)

For the quasi-steady-state solution, we must solve

( ) = ( ) : (12)

These equations are straightforward to solve, yielding the quasi-steady-state solution:

( ) =

2

sin(

2

): (13)

It is straightforward to verify that after the tournament phase, this solution is symmetric about = 1 2,

and so we have a self-consistent solution. The fact that numerical experiments agree with this analysis

indicates that this is indeed a stable solution. Figure 1 demonstrates the validity of the assumption

that the behavior of a large but �nite number of niches is similar to that of an in�nite number of

niches. Figure 2 demonstrates the validity of the assumption that a large population with many niches

is similar to an in�nite population with in�nitely many niches. Now that we have the distribution of

the population, it is straightforward, using the mean-�eld approximation, to compute the probability

that a certain subpopulation will lose every tournament that it enters. This will tell us how the number

of niches, k, depends on time. The rate of loss is

k

= �

2

sin(

2

)

2

(

2

)

: (14)

4



5 10 15 20

Empirical vs. Continuum Pop. vs Rank

10

20

30

40

50

Figure 2: Analytical and empirical distributions of niche count are consistent.

The factor of two in the exponent comes because each individual enters twice in tournaments.

A little massaging gives

k

= �k (1� cos(

2

)

(

2

)

(15)

or

k

= �k ( k) (16)

where is determined by the previous equation. It can be shown that only the values of the integrand

near the endpoint at = 1 matters in the integral when k is large. Doing the asymptotic expansion

yields the following:

k

= �

2

k

: (17)

Using the initial condition k(0) = k we obtain

k =

1

2

: (18)

The following are two numerical studies to check this result. We used a �xed number of individuals

per niche, varied the number of niches in the initial population, and asked how many niches survive �fty

generations. The results are shown in �gure 3. We also took a single run and asked how many niches

survived as a function of time. These results are shown in �gure 4.

A simple rule of thumb for computing the required population size for supporting k niches is to set

1 at = 0, which gives

k : (19)

The number of niches we can support for a �xed number of generations scales as the square root of

the population size. Thus, if we want to support twice as many niches, we need four times as many

individuals in the population.

As a practical matter, the chaotic dynamics together with the rapid and relentless loss of niches is

disconcerting and tolls the death knell for the naive combination of tournament selection and sharing.

In the next section, we show that sharing and tournament selection can become more simpatico with a

simple yet inobvious modi�cation to the combined scheme.

5



10 20 30 40

Surviving Niches, Predicted and Experimental, N/n=7

5

10

15

20

25

Figure 3: The number of niches that survive 50 generations versus the initial number of niches shows

good agreement between mean-�eld prediction and experiment.

100 200 300 400 500

n vs. t for n0 = 400, N = 20000 (Predicted and Experiment)

200

250

300

350

400

Figure 4: A comparison of experimental versus predicted mean-�eld loss in the number of niches shows

generally good agreement. The total population size is 20 000 and the initial number of niches is 400.

6



ourna ent e ection it ontinuous dated arin

In the previous section, we began to understand how the scaling of sharing and the autoscaling of tour-

nament selection seem to �ght each other when used in naive combination, but we also saw how the

di�culty seems largely to be one of timing. That is, by alternately applying tournaments to shared

�tness values calculated over populations generated themselves by tournaments, the combined scheme is

in an endless loop of accentuating the inevitable small di�erences that result from the imperfections of

sharing. It is natural to wonder whether there is some way to avoid this rat race through a realignment

of the timing. There is, and the answer is remarkably straightforward. Instead of applying tourna-

ment selection to a population that has undergone shared �tness calculations en masse in the extant

population, we instead apply tournament selection according to shared �tness values that have been

updated continuously using only the individuals actually chosen to be members of the target or next

generation. In this way, continuous feedback is obtained regarding the actual state of the population,

and this feedback is used immediately in the next shared �tness calculation that is used to determine

whether one string or another gets chosen to enter the target population. To put this another way, in

the naive combination, we tried to create the new generation by looking only at how many individuals

existed in each niche in the old generation. What we will try to do now is to create the target generation

by looking at how many individuals exist in the new generation as it is being created. That is, when

two individuals compete, we look in the new generation and see which one has proportionately fewer

than its target number of individuals, choosing that indivdual to win that particular tournament. In

this section, we partially test and analyze this proposed scheme.

.1 Testing and analysis

Our initial tests consider the application of tournament selection with continuously updated sharing

using equal �tness values. We have found that with ten individuals per niche, we can support 500 niches

for 50 generations with no losses, and there seems little reason why many more or many fewer niches

can't be supported as long as the number of individuals allocated per niche is su�ciently high. Of course,

even with this scheme niches can be lost, but the loss rate is much lower than in the naive case or in the

unimpeded drift case examined in the appendix. To understand that losses can still occur, consider a

scenario where among a number of healthy niches, there are three niches, A, B, and C, facing extinction,

each with only one individual remaining. Let us also assume that the shu ing is so unlucky as to cause

these niches to compete only with each other (this argument applies strictly to tournaments performed

with replacement). Since all three niches are in identical predicaments, we consider only the case where

A �ghts B in the �rst tournament and loses. In the second tournament, if A �ghts C and loses again, it

is eliminated. Otherwise, it will have at least one copy in the next generation. Although the possibility

of total loss is possible, the scenario suggests that total loss is rather unlikely.

We can analyze the quasi-steady-state of this algorithm in the following way. Let us look at the

size of the niche in the new generation during reproduction. We will assume that there are already a

substantial number of individuals in the target population. Under these conditions, the algorithm will

have the same noise characteristics as the following algorithm: take two individuals at random in the

population and replace the more redundant individual with another copy of a less redundant individual.

Let ( ) be the probability of �nding a niche with k� individuals. Then the rate of production of

niches with k � individuals is

( � 1) ( � 1) ( ) ( 1) ( 2) : : : (20)

and the rate of destruction of niches with k� individuals is ( ). The quasi-steady-state condition

gives that the rate of production equals the rate of destruction:

( ) = ( � 1) ( � 1) ( ) ( 1) ( 2) : : : (21)

We will assume that ( ) decreases rapidly in for large so that we can approximate the sum by the

�rst term:

( ) ( � 1) : (22)

7



The general solution to this equation is

( )

�

2

(23)

where and are arbitrary constants. We see that ( ) does indeed decreases rapidly in for

large so our ansatz is self-consistent. From this argument, we conclude that large uctuations from the

equilibrium positition of k individuals per niche are extremely unlikely; the probability of a uctuation

of size drops as an exponential of an exponential. The rate of loss of niches is proportional to the

probability of seeing a uctuation of size k:

n

� k

�

2

: (24)

So we see that increasing the niche size by even a single individual represents a dramatic improvement

in the ability of the algorithm to sustain niches. To insure that we maintain genetic diversity, we should

set

n

1 and solve for . This gives

= k log( log( k)): (25)

where , , and are constants. We will assume that for any reasonable value of k, the double

logarithm is of order unity. This gives

= k: (26)

Using a population size of ten times the number of niches seems to yield no loss of genetic diversity for

any reasonable value of k. Thus, the number of niches we can support goes up almost linearly in the

population size.

There are several ways to implement this method in a real application. One way would be to use the

usual idea of adjusting the �tness function with a sharing function (Goldberg & Richardson, 1987) and

compute the sharing function by using the target population. Another method would be to introduce a

niche size parameter n . With this method, we would use the usual sharing function to determine the

number of individuals in a niche, but we would determine which individual wins a tournament in the

following manner: if the two niches that the individuals belong to both have less than n members, then

the individual with the better �tness value wins; otherwise the more endangered individual wins. The

�tness-sharing method evolves to a population that has more individuals in the niches that have higher

�tness peaks, and the niche-threshold method evolves to a population with roughly n individuals in

each of the best n niches.

We can make a modi�cation of this algorithm to speed it up. Currently, each generation requires

that we do ( ) operations to compute the number of individuals in the same niche. Actually, we do

not need to sample the entire target population to get a good estimate of the number of individuals in

a niche as has been suggested elsewhere (Goldberg & Richardson, 1987). We only need to look at k

individuals in the target population, where 5 for a good sampling. This reduces the computational

complexity to ( k) per generation.

This technique is ready for trial in practical problems. It is easy to implement and stably maintains

the target subpopulation sizes. It should prove to be an immediate aid to genetic algorithmists looking

for alternative means of obtaining e�ective niching in their GAs.

onc usions

This paper has considered the combination of tournament selection and the sharing-function method and

has shown both analytically and empirically that the naive combination of these methods is unable to

maintain a signi�cant number of niches stably. On the other hand, by continuously updating the sharing

calculation in the target generation, the dynamics settle down and the modi�ed method, tournament

selection with continuously updated sharing, is able to maintain many niches, almost without loss. A

number of extensions of the technique have been suggested, including the use of niching thresholding and

partial niche sampling, and more work remains. Nonetheless, the analytical calculations and computer

simulations presented herein support the trial of this technique in the many genetic algorithms where

stable niching is a must.

8



c no ed ents

The authors acknowledge the support provided by the US Army under Contract DASG60-90-C-0153

and by the National Science Foundation under Grant ECS-9022007.

na sis of ni eded enetic rift

Boltzmann tournament selection has been suggested as one way to obtain niching-like behavior in a

tournament scheme (Goldberg, 1990), and the original work presented some analytical and empirical

results in support of that claim. In its purest form, BMTS uses only �tness information to distinguish

between di�erent individuals although the original paper recognized that it might be useful to use other

signals such as genotypic or phenotypic di�erence to distinguish between di�erent individuals as well. At

high temperatures, if �tness is the only distinguishing signal, Boltzmann tournament selection is subject

to the vagaries of random genetic drift. This is clear and not open to question, because all individuals

are otherwise indistinguishable to the algorithm, and if there are di�erences that are unknown to the

selection process, they can only be acted upon by the well-known e�ects of random drift in a �nite

population (Goldberg & Segrest, 1987). In this appendix, we calculate a mean-�eld approximation

of such unimpeded drift and apply it to calculate the number of niches that are supported as time

goes on. As expected, the calculation shows that a drifting population provides little protection to the

undi�erentiated niches, and this suggests that at high temperatures that Boltzmann tournament selection

is ine�ective when no other signal other than �tness is used to distinguish between di�ering members of

di�erent niches. On the other hand, the analysis does not apply to lower temperatures where there is

di�erentiation among members of di�erent niches, and members are chosen to participate in tournaments

in a manner that biases that participation toward lower �tness (most di�erent) individuals. Whether

the bias of the anti-acceptance step is enough to counteract the bias of the primary tournament stably is

an open question, upon which this analysis sheds little light. Nonetheless, these analysis techniques may

prove useful in answering this question and|if it proves to be necessary|-restructuring the algorithm

to obtain the desired stable, near-Boltzmann performance.

Rather than concentrate on the entire population as we did before, we will concentrate on a single

niche. We will assume that at = 0, all niches have the same number of individuals and recognize that

we can use generating functions to do the analysis. Let represent the state with a single individual,

represent the state with two individuals, (1 ) represent the state which has �fty percent probability

of having no individuals and �fty precent probability of having one individual, and so on. Using this

notation, we can write the time evolution of the niche in the mean-�eld approximation. At = 0,

the niche has n individuals, and so the initial state is represented by the function

n

. Each successive

generation, the individuals in the niche can win both tournaments, win one tournament, or lose both

tournaments, with probabilities 1 4, 1 2, and 1 4, respectively. We represent this by substituting by

= (

+

) each generation. The result is an iterative equation:

( 0) =

n

; (27)

( ) = ((

1

2

) � 1): (28)

Note that (0 ) gives the probability that the niche will have no individuals at time . Our estimate

for the number of niches remaining at a given time is therefore

k( ) = k 1� (0 ) : (29)

We can get a better idea of how the system behaves by using asymptotics on the iterative equation

( 1) = (

( )+

) . Let ( ) = 1� ( ). The iterative equation becomes:

( 1) = ( ) 1�

1

4

( ) : (30)

For large , the behavior is given by:

( ) = 4 : : : : (31)

9



10 20 30 40 50

350

400

450

500

Figure 5: A comparison of analysis versus experiment for the case of unimpeded drift shows good

agreement with 500 niches and 10 individuals niche.

lugging this back into the de�nition of the generating function gives:

(0 ) = 1� 4 : : : (32)

and so the number of niches alive at time for large is

k( ) =

4k

: : : : (33)

As expected, the loss of niches is a severe problem, and �gure 5 shows the number of niches that survive

as a function of generation number in a run starting with 500 niches and 10 individuals per niche. It is

interesting that the mechanism of loss is in some sense opposite to that observed in the previous analysis

of the naive combination of sharing and tournament selection. There the loss resulted from the successive

and repeated overshooting corrections. ere, the loss results from the lack of any correction whatsoever.

Again, extrapolating these results to low temperatures should be done with caution. There is a restoring

pressure of sorts in the anti-acceptance phase of the algorithm; whether it is strong enough to counteract

the positive bias of the acceptance phase and the noise of drift is unclear, but this analysis provides a

path to answering that open question and repairing the BMTS algorithm should this be necessary.

eferences

Baker, . E. (1985). Adaptive selection methods for genetic algorithms. roceedings of an nternational

onference on enetic lgorithms and heir pplications, 101{111.

Deb, K. (1989) enetic algorithms in multimodal function optimization (MS Thesis and TCGA Report

No. 89002). Tuscaloosa: University of Alabama, The Clearinghouse for Genetic Algorithms.

Deb, K., & Goldberg, D. E. (1989). An investigation of niche and species formation in genetic function

optimization. roceedings of the hird nternational onference on enetic lgorithms, 42{50.

Deb, K., & Goldberg, D. E. (1991). nalyzing deception in trap functions (IlliGAL Report No. 91009).

Urbana: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.

Goldberg, D. E. (1990). A note on Boltzmann tournament selection for genetic algorithms and

population-oriented simulated annealing. omple ystems , 445{460.

10



Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic

algorithms. oundations of enetic lgorithms, 69{93.

Goldberg, D. E., Deb, K., & Clark, . . (1991). enetic algorithms noise and the sizing of populations

(IlliGAL Report No. 91010). Urbana: University of Illinois at Urbana-Champaign, Illinois Genetic

Algorithms Laboratory.

Goldberg, D. E., & Richardson, . (1987). Genetic algorithms with sharing for multimodal function

optimization. roceedings of the econd nternational onference on enetic lgorithms, 41{49.

Goldberg, D. E., & Segrest, . (1987). Finite Markov chain analysis of genetic algorithms. roceedings

of the econd nternational onference on enetic lgorithms, 1{8.

11


