
WALSH FUNCTION ANALYSIS OF

GENETIC ALGORITHMS

OF NON-BINARY STRINGS

BY

CHRISTOPHER KIANKHO OEI

B.S., California Institute of Technology, 1990

M.S., University of Illinois, 1991

THESIS

Submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1992

Urbana, Illinois

WALSH FUNCTION ANALYSIS OF

GENETIC ALGORITHMS

OF NON-BINARY STRINGS

Christopher Kiankho Oei, M.S.

Department of Computer Science

University of Illinois at Urbana-Champaign, 1992

David E. Goldberg, Advisor

The Walsh transform is used extensively as a tool in determining whether a �tness

function over a binary string is deceptive or not. This thesis shows that the Walsh

transform method for detecting deception is easily generalized to functions over non-

binary strings such as ternary strings, strings with real parameters, and strings with

some binary and ternary characters and some real parameters. A generalization of

the Hadamard transform is then used to organize the generalized Walsh coe�cients

into conditions for static deception for non-binary alphabets. The variances of �tness

of schemata are calculated using generalized Walsh coe�cients. Mathematica code

for performing most of the calculations mentioned is included.

iii

Contents

Chapter Page

1 Introduction : 1

1.1 Preview : 1

1.2 Notation : 2

2 History : 4

3 Generalized Walsh Functions and Transforms : : : : : : : : : : : : : 8

3.1 Functions Over k-ary Strings : 8

3.1.1 k-ary Walsh Functions : 9

3.1.2 k-ary Walsh Transform : 10

3.1.3 Some Theorems and Proofs : : : : : : : : : : : : : : : : : : : 12

3.2 Functions Over

~

k-ary Strings : 17

3.2.1

~

k-ary Walsh Functions : 17

3.3 Functions Over Reals : 18

iv

3.4 Reduction to Smaller Alphabets : 20

3.5 Generalizing the Fast Walsh Transform : : : : : : : : : : : : : : : : : 26

4 Using Generalized Walsh Coe�cients to Determine Schema Aver-

ages : 30

5 Using Generalized Hadamard Transforms to Detect Deception : : 34

5.1 Deception in Non-binary Strings : 34

5.2 Hadamard Transform : 37

5.3 Detecting Deception : 38

6 Variance of Fitness : 42

7 Conclusion : 48

Appendix Page

A Mathematica 2.0 Programs : 51

A.1 Generalized Walsh Functions Over k-ary Strings : : : : : : : : : : : : 51

A.2 Generalized Walsh Functions Over More Arbitrary Strings : : : : : : 52

A.3 Generalized Fast Walsh Transform Over k-ary Strings : : : : : : : : : 53

A.4 Generalized Fast Walsh Transform Over More Arbitrary Strings : : : 55

A.5 Converting Schema Averages to Walsh Coe�cients : : : : : : : : : : 57

v

A.6 Hadamard Transforms : 60

A.7 Determining Deception Using Hadamard Transforms : : : : : : : : : 61

A.8 Determining Deception to Speci�ed Order : : : : : : : : : : : : : : : 64

A.9 Fully Deceptive Conditions : 65

B Another Basis for Generalized Transforms : : : : : : : : : : : : : : : 69

References : 74

vi

Chapter 1

Introduction

1.1 Preview

Walsh functions, introduced by the mathematician J. L. Walsh in 1923, recently

have become popular tools in �elds such as telecommunications engineering, radar

systems, image recognition and processing, speech processing, coding systems, and

spectroscopy (Beauchamp, 1975). Bethke (1981) introduced the Walsh-schema trans-

form, a method of using Walsh functions for computing schema averages. Since then,

the Walsh-schema transform has become a cornerstone in the theory of genetic algo-

rithms (GAs).

Most of the theory of genetic algorithms applies to GAs over binary strings, real

numbers, or permutations. Attempts to generalize this theory borrowed some notions

1

from set theory (Radcli�e, 1991; Vose & Liepins, 1991). Recently, Mason (1991) ex-

tended the concept of partition coe�cients (Bethke, 1981) from the theory of binary-

coded genetic algorithms to GAs over non-binary strings.

This thesis generalizes Walsh functions to non-binary strings and reworks some

of the existing theory of GAs to incorporate these new functions. Topics that will

be covered and extended include Bethke's Walsh schema transform, real-coded GAs

(Bledsoe, 1961; Goldberg, 1990a; Wright, 1991), detecting static deception and

Hadamard transforms (Homaifar & Qi, 1990; Homaifar, Qi, & Fost, 1991), and the

variance of �tness (Goldberg, Deb, & Clark, 1991; Goldberg & Rudnick, 1991; Rud-

nick & Goldberg, 1991).

1.2 Notation

Throughout this thesis, n will refer to the length of the strings in the domain of the

�tness function. k will refer to the cardinality of the alphabet, or if each character

of a string is taken from a di�erent alphabet, k

1

refers to the alphabet for the �rst

character, k

2

for the second, and so on. A k-ary alphabet is an alphabet with k

characters. The characters in a k-ary alphabet will be represented by the integers 0

through k � 1. A k-ary string is a string all of whose characters are taken from the

same k-ary alphabet. A string that belongs to a

~

k-ary alphabet is a string whose �rst

character belongs to a k

1

-ary alphabet, whose second character belongs to a k

2

-ary

2

alphabet, etc; such strings will be referred to as

~

k-ary strings. A string will be repre-

sented by a vector whose components are the integer representations of the characters

in the string. For example, the hexidecimal (16-ary) string \3F2" would be denoted

by (3,15,2). k-ary Walsh functions are the generalization of Walsh functions to k-ary

alphabets, and

~

k-ary Walsh functions are the generalization to strings that belong to

~

k-ary alphabets. Both of these generalizations of Walsh functions, as well as gener-

alizations of the Walsh functions to strings with characters which are real numbers,

will be referred to as generalized Walsh functions. The corresponding transforms will

be referred to as k-ary and

~

k-ary Walsh transforms.

3

Chapter 2

History

The question of what kind of problem is di�cult for a GA started with Bledsoe (1961).

Bledsoe described a situation he called lethal dependence in which a mutation in each

of two genes would be an improvement, but a mutation in either gene alone would

lead to death.

Following Holland's schema theorem (Holland, 1975), Bethke (1981) introduced

the Walsh-schema transform for computing schema averages and gave some intu-

itive conditions for problem di�culty that depended on the smoothness of the �tness

function and the asymptotic behavior of the Walsh coe�cients.

The smoothness arguments were also used byWeinberger, who started with Eigen's

model for natural selection (Weinberger, 1987) and studied correlation lengths on the

\landscape" of the �tness function (Weinberger, 1988; Weinberger, 1990). Kau�man

4

in (Kau�man, 1989; Kau�man, 1990; Kau�man & Levin, 1987) created and analyzed

a model �tness landscape with tunable ruggedness, which was analyzed further in

Manderick, de Weger, & Spiessens (1991). Lipsitch (1991) used cellular automata

rules to generate �tness landscapes and performed simulations to discover which

classes of cellular automaton created the hardest landscapes. These analyses, how-

ever, dealt with hill-climbing on �tness functions and neglected the e�ects of crossover

and the usefulness of schemata. Also, Goldberg (1990b) pointed out that the asymp-

totic behavior of the Walsh coe�cients (and therefore the smoothness of the function)

is not enough to insure the growth of important schemata.

Holland's schema theorem came back into play when Goldberg (1987) de�ned de-

ception and introduced the minimal deceptive problem. The conditions for full static

deception, a situation in which all low-order schemata are misleading, was introduced

in Goldberg (1989b). The analysis of full static deception taking into account the

schema disruption due to crossover and mutation was done in Goldberg (1989c) using

operator-adjusted Walsh coe�cients.

This line of reasoning gave rise to a host of techniques: a method for analyzing a

GA population in which schemata are not distributed uniformly (Bridges, Goldberg,

1989), a method that uses Hadamard transforms to organize the deceptive conditions

(Homaifar & Qi, 1990; Homaifar, Qi, & Fost, 1991), methods for constructing fully

deceptive and intermediate deceptive functions (Deb & Goldberg, 1991; Goldberg,

5

1990b; Liepins & Vose, 1991; Whitley, 1991a), and a simpler set of criteria su�cient

to insure deception (Deb & Goldberg, 1992). This theory of deception has been used

to explain some experimental results, such as why a problem that is easy for a GA

might be di�cult for a hill-climber (Wilson, 1991), and why certain GA test suites

were solved so easily (Das & Whitley, 1991; Davis, 1991). It also lead to some attacks

(Forrest & Mitchell, 1991; Grefenstette, 1991; Mitchell & Forrest, 1991; Mitchell,

Forrest, & Holland, 1991; Tanese, 1989) that the lack of deception, where deception

is de�ned by misleading schemata averages, is not enough by itself to insure GA

convergence to the global optimum.

Another mode of GA failure, apart from deception, has to do with the variance of

schema �tnesses and sampling error (Davidor, 1991; Liepins & Vose, 1990b; Scha�er,

Eschelman& O�ut, 1991). There were a number of studies that introduced techniques

for calculating schema �tness variances and signal-to-noise ratios and explain how

to size a GA population accordingly (Goldberg, Deb, & Clark, 1991; Goldberg &

Rudnick, 1991; Rudnick, 1991; Rudnick & Goldberg 1991). Connected with the issue

of variance is multimodality, or having many high peaks that may confuse the GA

(Goldberg, Deb & Horn, 1992). Goldberg, Deb, & Clark (1991) give an overview and

a summary of conditions for GA success.

Generalizations of this basic theory of convergence include applications to per-

mutation problems (Kargupta, Deb, & Goldberg, 1992; Sikora, 1991) and �tness

6

functions with real parameters (Goldberg, 1990a; Wright, 1991). On a more abstract

level are generalizations of the schema notion to arbitrary linear combinations of bits

(Liepins & Vose, 1990a), and arbitrary predicates (Vose & Liepins, 1991; Radcli�e,

1991). Mason (1991) generalized the notions of partition coe�cients and static de-

ception to �nite non-binary alphabets.

The other approaches to the question of GA convergence are few and sparse.

Hart and Belew (1991) points out that the general problem that the GA tries to

solve is NP-hard. Kau�man (1990) uses some concepts from information theory and

the physics of phase transitions to show a connection between information redun-

dancy and evolvability: minimal systems are not evolvable due to lethally dependent

parameters.

The work done on binary-coded GAs provides an extensive theoretical framework

that hinges on the Walsh-schema transform. This thesis will focus on the theory of

static deception generalized to non-binary alphabets and begins by generalizing the

Walsh transform.

7

Chapter 3

Generalized Walsh Functions and

Transforms

3.1 Functions Over k-ary Strings

This chapter examines functions over strings of length n whose characters are taken

from a k-ary alphabet. For example, we can use this method to analyze a function over

a ternary alphabet string. The basic idea is to treat each character in the string as a

separate dimension, then take the n-dimensional Fourier series. The exact similarity

between the generalized Walsh transform and Fourier series will be discussed later.

The point is that it is useful to think of the Walsh functions as functions of n variables

rather than functions of a single variable.

8

3.1.1 k-ary Walsh Functions

De�nition 1 De�ne the k-ary Walsh functions as

	

(k)

~|

(~x) =

1

p

k

n

e

2�{

k

~x�~|

; (3:1)

where the vector ~| = (j

1

; j

2

; . . . ; j

n

) is the k-ary representation of j, and the vector

~x = (x

1

; x

2

; . . . ; x

n

) is the k-ary representation of x.

Theorem 1 The k-ary Walsh functions satisfy the following normalization condition:

X

~x

	

(k)

~|

(~x)	

(k)

~

l

(~x) = �

j

1

l

1

�

j

2

l

2

. . . �

j

n

l

n

(3:2)

where barred quantities refers to the complex conjugate and � is the Kronecker delta.

The sum is over all distinct values of ~x.

Proof

X

~x

	

(k)

~|

(~x)	

(k)

~

l

(~x) =

1

k

n

k�1

X

x

1

=0

k�1

X

x

2

=0

. . . e

�

2�{

k

x

1

j

1

e

2�{

k

x

1

l

1

e

�

2�{

k

x

2

j

2

e

2�{

k

x

2

l

2

. . .;

= (

1

k

k�1

X

x

1

=0

e

2�{

k

x

1

(l

1

�j

1

)

)(

1

k

k�1

X

x

2

=0

e

2�{

k

x

2

(l

2

�j

2

)

) . . . ;

= �

j

1

l

1

�

j

2

l

2

. . . �

j

n

l

n

: (3.3)

When k = 2, the k-ary Walsh functions become the usual Walsh functions, up to a

normalization constant. Throughout this thesis, the normalization is chosen so that

the inner product of generalized Walsh functions is a Kronecker delta function. This

di�ers from the usual normalization convention for Walsh functions, but it has an

9

intuitive appeal when deriving theorems and proofs; these functions are orthonormal,

not merely orthogonal.

Example Take strings of length 2, n = 2, using a ternary alphabet, k = 3. Eval-

uating the fourth function, ~| = (1; 1), at the second position, ~x = (0; 2) gives the

following:

	

(3)

(1;1)

((0; 2)) =

1

p

3

2

e

2�{

3

(1;1)�(0;2)

= �

1

6

�

p

3

6

{: (3:4)

Another way of looking at the Walsh functions 	

(k)

~|

(~x) is to think of them as (up

to normalization) e

{�

where the phase � is the inner product between the index of the

function ~| and the position ~x and the distance metric for the inner product is such

that the phase increases by 2� as we traverse a dimension.

3.1.2 k-ary Walsh Transform

Now that the k-ary Walsh functions are de�ned, the k-ary Walsh transform can be

stated. To put it simply: a k-ary Walsh coe�cient is the inner product of the �tness

function with a k-ary Walsh function, and the k-ary Walsh transform gives the k-ary

Walsh coe�cients in terms of the �tness values.

10

De�nition 2 (k-ary Walsh Transform) The Walsh coe�cients w of a function f

are given by

w

~|

=

X

~x

	

(k)

~|

(~x)f(~x): (3:5)

Notice that we use the complex conjugate of the Walsh function.

Example Use a ternary alphabet and length 2 string again. The Walsh coe�cient

w

(0;1)

of a function f is given as follows:

w

(0;1)

=

1

3

e

0

f((0; 0)) +

1

3

e

�2�{=3

f((0; 1)) +

1

3

e

�4�{=3

f((0; 2))

+

1

3

e

0

f((1; 0)) +

1

3

e

�2�{=3

f((1; 1)) +

1

3

e

�4�{=3

f((1; 2))

+

1

3

e

0

f((2; 0)) +

1

3

e

�2�{=3

f((2; 1)) +

1

3

e

�4�{=3

f((2; 2)): (3.6)

De�nition 3 (Inverse k-ary Walsh Transform) The inverse transform is given

by

f(x) =

X

~|

	

(k)

~x

(~|)w

j

; (3:7)

where the sum is over all possible values of the k-ary string ~|.

Notice that the Walsh function is not conjugated in the inverse transform. In practice,

the generalizedWalsh transform and its inverse would be computed by the generalized

Fast Walsh Transform algorithm and the inverse generalized Fast Walsh Transform

listed in Appendix A.

11

Theorem 2 The inverse k-ary Walsh transform of a k-ary Walsh transform is the

identity transformation.

Proof Notice from the de�nition of the k-ary Walsh function (3.1) that 	

(k)

~x

(~|) =

	

(k)

~|

(~x).

X

~|

	

(k)

~x

(~|)w

~|

=

X

~|

	

(k)

~x

(~|)

X

~y

	

(k)

~|

(~y)f(~y);

=

X

~|

	

(k)

~x

(~|)

X

~y

	

(k)

~y

(~|)f(~y);

=

X

~y

f(~y)

X

~|

	

(k)

~x

(~|)	

(k)

~y

(~|);

=

X

~y

f(~y)�

x

1

y

1

�

x

2

y

2

. . . �

x

n

y

n

;

= f(~x): (3.8)

The method of using these functions to determine deception will be discussed in a

later chapter. The procedure is a straightforward extension of the binary case. First,

the orthogonality of the k-ary Walsh functions is used to �nd k-ary Walsh coe�cients

for the �tness function to be analyzed. These coe�cients are used to compute the

schema averages, and the schema averages are used to say something about deception.

3.1.3 Some Theorems and Proofs

The following are a few theorems about the k-ary Walsh transforms. Most of them

are simple and add to our intuition of how they work.

12

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

f

1

0 0 0 3 3 3 12 12 12

f

2

0 1 2 0 1 2 0 1 2

f 0 1 2 3 4 5 12 13 14

Table 3.1: Values of f; f

1

; and f

2

for various values of x.

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

w

1

15 0 0

�15+3

5=2

{

2

0 0

�15+3

5=2

{

2

0 0

w

2

3

�3+3

1=2

{

2

�3+3

1=2

{

2

0 0 0 0 0 0

w 18

�3+3

1=2

{

2

�3+3

1=2

{

2

�15+3

5=2

{

2

0 0

�15+3

5=2

{

2

0 0

Table 3.2: Generalized Walsh coe�cients of the functions in Table 3.1.

Theorem 3 A function is additively separable if f(~x) = f

1

(x

1

)+f

2

(x

2

)+. . .. A func-

tion is additively separable if and only if its k-ary Walsh transform is also additively

separable.

Proof The proof of this comes immediately from the fact that the transform is

linear.

Example Consider again the ternary alphabet and let f((x

1

; x

2

)) = 3x

2

1

+ x

2

. Let

f

1

(x

1

; x

2

) = 3x

2

1

and f

2

(x

1

; x

2

) = x

2

so that f(x

1

; x

2

) = f

1

(x

1

; x

2

) + f

2

(x

1

; x

2

). See

Tables 3.1 and 3.2 for the function values and generalized Walsh coe�cients.

13

Note that w

1

+ w

2

= w. Although this theorem is straightforward, it stresses the

idea that it is useful to think of the characters in the string as being independent

variables. Also, functions which are partially additively separable are often used

in testing genetic algorithms. Partially additively separable functions also arise in

real applications. For example, in designing a high-performance engine using genetic

algorithms, the �rst three characters in the string might code for the type of steel

used, while the next two characters might code for the fuel mixture. Intuitively, these

two characteristics are mostly independent; the optimal fuel mixture does not depend

strongly upon the type of steel used, and the best kind of steel to use does not depend

strongly upon the fuel mixture. We can express the ideas above mathematically as

follows:

f((x

1

; x

2

; x

3

; x

4

; x

5

)) = f

123

(x

1

; x

2

; x

3

) + f

45

(x

4

; x

5

) +O(�) (3:9)

where � is small compared to one, and all the functions f; f

123

; and f

45

; are of order

one. In this case,

w

(j

1

;j

2

;j

3

;j

4

;j

5

)

= u(j

1

; j

2

; j

3

) + v(j

4

; j

5

) + O(�): (3:10)

To put it more simply: if the �tness function is well-approximated by a partially ad-

ditively separable function, then the k-ary Walsh transform is also well-approximated

by a partially additively separable function.

14

Theorem 4 The average of the function keeping the �rst character �xed at 0 and

varying the other characters is given by the following sum:

1

k

n=2

(w

(0;0;0;...)

+ w

(1;0;0;...)

+ w

(2;0;0;...)

+ . . . + w

(k�1;0;0;...)

): (3:11)

Note that w

0

is the average of the function (times a normalization constant).

Notice that the summation over all the variables of the function except the �rst

character has been reduced to a single summation in transform space. This is why

the k-ary Walsh transform is useful. The average of a function of strings of length

n over a schema with m �xed positions can be expressed as a sum over k

m

k-ary

Walsh coe�cients. This idea is used later in the chapter on using generalized Walsh

functions to calculate schema averages.

Example Let us take f((x

1

; x

2

)) = 3x

2

1

+ x

2

and use a ternary alphabet as in a

previous example above. Then the average of the function setting x

1

= 0 and letting

x

2

vary is

1

3

ff((0; 0)) + f((0; 1)) + f((0; 2))g =

1

3

(w

(0;0)

+ w

(1;0)

+ w

(2;0)

): (3:12)

Had f been a function of strings of length 3 instead of 2, the left hand side of the above

equation would have 9 terms, while the right hand side would still have 3 terms.

Theorem 5 The average of the square of the absolute value of the function is equal

to the average of the square of the absolute value of the k-ary Walsh transform of the

function.

15

This is analogous to the same relation in Fourier transforms. The usefulness of taking

the average of jf j

2

will become apparent in the chapter on the variance of �tness.

Proof

X

~x

f(~x)f(~x) =

X

x

X

~p

	

(k)

~x

(~p)w

~p

X

~q

	

(k)

~x

(~q)w

~q

;

=

X

~p;~q

X

~x

	

(k)

~x

(~p)	

(k)

~x

(~q)w

~p

w

~q

;

=

X

~p;~q

X

~x

	

(k)

~p

(~x)	

(k)

~q

(~x)w

~p

w

~q

;

=

X

~p;~q

�

p

1

q

1

�

p

2

q

2

. . . �

p

n

q

n

w

~p

w

~q

;

=

X

~p

w

~p

w

~p

: (3.13)

Example Let f((x

1

; x

2

)) = 3x

2

1

+ x

2

as before. The sum of squares of f over the

entire x space is 564, and so is the sum of the squares of the absolute values of the

generalized Walsh coe�cients.

Instead of summing the squares of f over the entire x space, let us sum it over

just the strings with x

1

= 0:

X

x

2

;x

3

;...;x

n

f(~x)f(x) =

X

x

2

;x

3

;...;x

n

X

~p

	

(k)

~x

(~p)w

~p

X

~q

	

(k)

~x

(~q)w

~q

;

=

X

~p;~q

X

x

2

;x

3

;...;x

n

	

(k)

~x

(~p)	

(k)

~x

(~q)w

~p

w

~q

;

=

X

~p;~q

X

x

2

;x

3

;...;x

n

	

(k)

~p

(~x)	

(k)

~q

(~x)w

~p

w

~q

;

=

X

~p;~q

�

p

2

q

2

�

p

3

q

3

. . . �

p

n

q

n

w

~p

w

~q

;

16

=

X

p

1

;q

1

X

p

2

;p

3

;...;p

n

w

~p

w

(q

1

;p

2

;p

3

;p

4

;...;p

n

)

: (3.14)

Notice that the sum on the left has k

n�1

terms, while the sum on the right has k

n+1

terms. So working in the transform space makes for more work in this case.

3.2 Functions Over

~

k-ary Strings

This section considers functions over

~

k-ary strings, strings whose characters are taken

from di�erent alphabets. The ideas from the previous sections in this chapter are still

valid, and the de�nitions need to be modi�ed only slightly.

3.2.1

~

k-ary Walsh Functions

Recall that k

p

is the size of the alphabet for the p-th character in a string. De�ne the

~

k-ary Walsh functions in the following manner:

	

~

k

~|

(~x) =

1

p

k

1

k

2

. . . k

n

n

Y

m=1

exp(

2�{

k

m

x

m

j

m

): (3:15)

Again, the normalization condition is given by the following:

X

~x

	

(

~

k)

~p

(~x)	

(

~

k)

~q

(~x) = �

p

1

q

1

�

p

2

q

2

. . . �

p

n

q

n

: (3:16)

The proof of the normalization works exactly the same way as it did before. The

form of the transform (3.5) and inverse transform (3.7) also remain the same.

17

3.3 Functions Over Reals

As a computer internally represents real numbers as integers, one might suspect that

there is some similarity between analyzing genetic algorithms whose �tness functions

are de�ned over strings whose characters are taken over large alphabets and analyzing

GAs with �tness functions over reals. This suspicion is correct, and with this in mind,

real variables will be referred to as characters taken from 1-ary alphabets, strings

that have one real variable followed by one ternary character will be referred to as

(1; 3)-ary strings, and so on. Despite the similarities, the analysis of functions with

real variables is not exactly the same as the analysis of functions with characters from

large alphabets; therefore the 1 symbol should be taken to signify a real variable

rather than a character from an in�nitely large alphabet.

Previously, it was demonstrated that the generalized Walsh transform was equiv-

alent to taking the Fourier transform along each dimension. All one needs to do

is apply this same idea. If the �tness function is a function of two real variables

and three discrete variables, then simply take the Fourier transform along all �ve

dimensions.

To avoid normalization constants, this thesis assumes that the real variables of

the �tness function are always in the unit interval [0,1]. One can often rescale the real

variables in the �tness function so that this is true. Later, the analysis of functions

whose variables are in the range [0;1] and [�1;1] will be discussed.

18

Consider a function over (1;1; 3; 3; 3)-ary strings. That is, a function that takes

two real variables and three ternary characters. The generalized Walsh coe�cients of

this function are given by:

w

(j

1

;j

2

;j

3

;j

4

;j

5

)

= 3

�3=2

Z

1

0

dx

1

Z

1

0

dx

2

2

X

x

3

=0

2

X

x

4

=0

2

X

x

5

=0

f(~x)e

�2�{(x

1

j

1

+x

2

j

2

+x

3

j

3

=3+x

4

j

4

=3+x

5

j

5

=3)

:

(3:17)

And the inverse transform is given by:

f(~x) = 3

�3=2

1

X

j

1

=�1

1

X

j

2

=�1

2

X

j

3

=0

2

X

j

4

=0

2

X

j

5

=0

w

(j

1

;j

2

;j

3

;j

4

;j

5

)

e

2�{(x

1

j

1

+x

2

j

2

+x

3

j

3

=3+x

4

j

4

=3+x

5

j

5

=3)

:

(3:18)

Notice that the sum over j

1

and j

2

run from �1 to 1, and that there is no normal-

ization factor associated with x

1

and x

2

because they range from 0 to 1.

In practice, the sum from �1 to 1 would be approximated by a sum from �A

to A, where A is some large integer constant. This will yield an arbitrarily accurate

approximation whenever the in�nite sum converges. Although the necessary and

su�cient conditions for convergence are beyond the scope of this thesis and is a topic

for future research, piecewise smooth functions can always be approximated by this

method (Tolstov, 1962), and will be discussed in the next section of this chapter.

19

3.4 Reduction to Smaller Alphabets

One of the most useful properties about using these generalized Walsh transforms is

that functions over reals or large alphabets can sometimes be well-approximated by

functions over small alphabets. Consider a function over a single real variable. The

generalized Walsh transform is equivalent to the Fourier transform in this case. It

is well-known that if the �rst m derivatives of the function are continuous, and the

m + 1-th derivative is discontinuous, then for large j, the magnitude of the Fourier

coe�cients fall as j

�m�2

(Lighthill, 1959). Thus, if the function is smooth enough,

then one can get good approximations to schema averages by dropping the generalized

Walsh coe�cients with high spatial frequencies. Goldberg (1990a) theorizes that a

high-cardinality GA performs a reduction to smaller alphabets; this section gives an

explanation of when this can occur, what it means in terms of generalized Walsh

coe�cients, and how to take advantage of it when analyzing a �tness function.

Example Consider the following test function:

De�nition 4 (Test Function 1)

f(x) =

8

>

>

>

<

>

>

>

:

x if x < 1=2

0 otherwise

(3:19)

This function has no continuous derivatives, and is discontinuous itself. Thus, the

generalized Walsh coe�cients w

j

fall as j

�1

. See Figure 3.1 for comparisons of the

20

Test Function 1

0.2 0.4 0.6 0.8 1
x

3 term approximation

0.1

0.2

0.3

0.4

0.5

f

0.2 0.4 0.6 0.8 1
x

5 term approximation

0.1

0.2

0.3

0.4

0.5

f

0.2 0.4 0.6 0.8 1
x

7 term approximation

0.1

0.2

0.3

0.4

0.5

f

0.2 0.4 0.6 0.8 1
x

9 term approximation

0.1

0.2

0.3

0.4

0.5

f

Figure 3.1: Test Function 1. Jump discontinuity slows convergence.

function with the approximations. Notice that since f is real-valued, the general-

ized Walsh coe�cients w

j

and w

�j

are complex conjugates; and to get a real-valued

approximation, if we keep w

j

in our sum, we must also keep w

�j

.

Example Consider the function:

De�nition 5 (Test Function 2)

f(x) = x

2

(1� x)

2

(

1

2

� x)

3

: (3:20)

21

Test Function 2

0.2 0.4 0.6 0.8 1
x

3 term approximation

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

f

0.2 0.4 0.6 0.8 1
x

5 term approximation

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

f

0.2 0.4 0.6 0.8 1
x

7 term approximation

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

f

0.2 0.4 0.6 0.8 1
x

9 term approximation

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

f

Figure 3.2: Test Function 2. Smoother functions converge faster.

Since @

2

f=@x

2

equals 1=4 at x = 0 and �1=4 at x = 1, this function has a discon-

tinuous second derivative. Therefore, the generalized Walsh coe�cients fall as j

�3

.

See Figure 3.2 for comparisons of this function with the approximations. Notice how

much faster the approximations converge to this function than the previous one. If

a k-term generalized Walsh approximation is satisfactory, then the function can be

treated as if it were a function over a k-ary alphabet. Not only does this make taking

schema averaging simpler, but it also makes determining deception much easier.

22

Example Consider a function f((x

1

; x

2

)) where x

1

is a real variable in [0,1] and x

2

is

a character from a ternary alphabet. Let w

(j

1

;j

2

)

be the generalized Walsh transform

of f . Let w

0

(j

1

;j

2

)

be the (5,2)-ary approximation of w. Then we have the following

relations between w

0

and w:

w

0

(0;j

2

)

= 5

1=2

w

(0;j

2

)

;

w

0

(1;j

2

)

= 5

1=2

w

(1;j

2

)

;

w

0

(2;j

2

)

= 5

1=2

w

(2;j

2

)

;

w

0

(3;j

2

)

= 5

1=2

w

(�2;j

2

)

;

w

0

(4;j

2

)

= 5

1=2

w

(�1;j

2

)

: (3.21)

The reason this works is that k-ary generalized Walsh functions are periodic with

period k, and therefore the Walsh coe�cients with indices �m correspond to Walsh

coe�cients with indices k � m. The mapping used above keeps the 5 � 2 Walsh

coe�cients with the lowest spatial frequency and �xes the normalization.

Similarly, to reduce a function over (100,2)-ary strings to a function over a (7,2)-

ary strings, one would use the following mapping:

w

0

(0;j

2

)

=

7

1=2

100

1=2

w

(0;j

2

)

;

w

0

(1;j

2

)

=

7

1=2

100

1=2

w

(1;j

2

)

;

w

0

(2;j

2

)

=

7

1=2

100

1=2

w

(2;j

2

)

;

w

0

(3;j

2

)

=

7

1=2

100

1=2

w

(3;j

2

)

;

23

w

0

(4;j

2

)

=

7

1=2

100

1=2

w

(97;j

2

)

;

w

0

(5;j

2

)

=

7

1=2

100

1=2

w

(98;j

2

)

;

w

0

(6;j

2

)

=

7

1=2

100

1=2

w

(99;j

2

)

: (3.22)

Again, one simply takes the 7�2 Walsh coe�cients with the lowest spatial frequency

and �xes the normalization.

Let us do one �nal example. Consider again the Test Function 2 (3.20) we used

earlier. The Walsh coe�cients are given by the following:

w

0

= 0;

w

1

= �0:000265108{;

w

�1

= 0:000265108{;

w

2

= �0:000124861{;

w

�2

= 0:000124861{;

w

3

= �0:0000175818{;

w

�3

= 0:0000175818{;

.

.

.

.

.

.: (3.23)

The 7-ary approximation to Test Function 2 (3.20) would have Walsh coe�cients w

0

,

which are the following:

w

0

0

= 7

1=2

w

0

= 0;

24

w

0

1

= 7

1=2

w

1

= �0:000701409{;

w

0

2

= 7

1=2

w

2

= �0:000330351{;

w

0

3

= 7

1=2

w

3

= 0:0000465171{;

w

0

4

= 7

1=2

w

�3

= �0:0000465171{;

w

0

5

= 7

1=2

w

�2

= 0:000330351{;

w

0

6

= 7

1=2

w

�1

= 0:00070149{: (3.24)

Since a genetic algorithms population is always �nite in practice, it is impossible to

have individuals distributed over the entire real line from �1 to1 uniformly. In the

initial population, one must distribute the individuals according to some probability

distribution with a �nite integral. For every probability distribution P (x) with a �nite

integral, one can take a random variable uniformly distributed between 0 and 1 and

transform it into P (x) with an appropriate change of variable: x = g(r). For instance,

if r is a random variable uniformly distributed between 0 and 1, then x =

1

r

� 1 is a

random variable distributed between 0 and 1, and y = tan(�(r � 1=2)) is a random

variable distributed between �1 and 1.

Example Consider an initial population of 1-ary strings x of length 1 distributed

with the normalized probability distribution P (x). Let the �tness function be f(x).

Rather than considering f(x), it is easier to consider f(g(x

0

)), where the function g

25

is de�ned such that x

0

is distributed evenly between 0 and 1:

g(

Z

x

�1

P (q)dq) = x;

Z

x

�1

P (q)dq = g

�1

(x): (3.25)

Here, g

�1

(x) refers to the inverse of the function g. Under the change of variable

x

0

= g

�1

(x), the initial population of strings x

0

are uniformly distributed in the

interval [0,1].

This method of transforming an unbounded real variable into a real variable uni-

formly distributed in [0,1] allows us to analyze GAs over unbounded real variables

without introducing arbitrary cuto�s or generalizing nonuniformWalsh schema trans-

forms (Bridges & Goldberg, 1989).

3.5 Generalizing the Fast Walsh Transform

The Fast Walsh Transform (Goldberg, 1989b) can be generalized in a similar man-

ner to the Walsh transform. In the ordinary Fast Walsh Transform, one places the

function values f(x) on a binary tree; the position of f(x) on the tree corresponds to

the representation of x. For example, f((0; 1; 0; 0)) would be found by starting at the

root, taking the left branch, then the right, then a left, and �nally another left.

One descends down and process the tree level by level. At each level, one applies

the algorithm described below to each node in that level before descending down to

26

the next level. The algorithm is the following: take the left subtree l of the node, add

it to the right subtree of the node, and call the result l

0

; take the left subtree l of the

node, subtract the right subtree r and call it r

0

. Now replace the left subtree with l

0

and the right subtree with r

0

. To put it more brie
y: (l; r) ! (l + r; l � r) where the

tree-wise addition and subtraction means to add like components of l and r.

To generalize this to functions over k-ary strings, form a k-ary tree and descend

level by level. Instead of applying the rule (l; r) ! (l+r; l�r), we apply the following

rule:

(c

1

; c

2

; . . . ; c

k

) !

(c

1

+ c

2

+ . . . + c

k

;

c

1

+ e

2�{

k

c

2

+ e

4�{

k

c

3

+ . . . + e

2(k�1)�{

k

c

k

;

� � �): (3.26)

The basic idea is the same as with the ordinary Fast Walsh Transform, but instead

of simply adding and subtracting the children at each node, one performs a Fourier

transform upon the children. That is, c ! FT [c]. Note that if we have a large

alphabet, it is worthwhile to perform this Fourier transform using a Fast Fourier

transform.

Note that if we have a

~

k-ary alphabet, then we can still perform the Fast Walsh

Transform. The root node of our tree would have k

1

children; all the nodes at the

27

next lower level would have k

2

children, etc. We still go down the tree level by level

and apply the Fourier transform upon the children of each node.

Example Figure 3.3 shows a generalized Fast Walsh Transform for a function over

(2,3)-ary strings.

Mathematica 2.0 programs that compute k-ary and

~

k-ary Fast Walsh Transforms

and their inverses are given in Appendix A.

This chapter has shown that the Walsh functions and transforms can be gener-

alized to non-binary strings. The next chapter shows that the generalized Walsh

functions and transforms can be used to compute schema averages.

28

a

b

c

d

e

f

a + d

b + e

c + f

a - d

b - e

c - f

(a + d) + (b + e) + (c + f)

(a + d) + (b + e) exp(2πi/3) + (c + f) exp(4πi/3)

(a + d) + (b + e) exp(4πi/3) + (c + f) exp(8πi/3)

(a - d) + (b - e) + (c - f)

(a - d) + (b - e) exp(2πi /3) + (c - f) exp(4πi /3)

(a - d) + (b - e) exp(4πi /3) + (c - f) exp(8πi /3)

Stage 0: Stage 1:

Stage 2:

Figure 3.3: Generalized Fast Walsh Transform for (2,3)-ary strings.

29

Chapter 4

Using Generalized Walsh

Coe�cients to Determine Schema

Averages

Determining schema averages is at the heart for the reason of using these transform

methods. In Chapter 3, this thesis stated that a sum of f over m characters of a

string of length n turned into a sum of generalized Walsh coe�cients over n � m

characters. For this reason, the average of a function over a schema with m positions

�xed turns into a sum over m characters of the Walsh coe�cients.

30

Example Consider strings of length 3 taken from a (2,4,3)-ary alphabet. Some

examples of schema averages are as follows:

f((�; �; �)) =

1

4

w

(0;0;0)

;

f((0; �; �)) =

1

4

(w

(0;0;0)

+ w

(1;0;0)

);

f((1; �; �)) =

1

4

(w

(0;0;0)

� w

(1;0;0)

);

f((�; 0; �)) =

1

4

(w

(0;0;0)

+ w

(0;0;1)

+ w

(1;0;0)

+ w

(1;0;1)

);

f((�; 1; �)) =

1

4

(w

(0;0;0)

+ {w

(0;0;1)

� w

(1;0;0)

� {w

(1;0;1)

);

f((�; 2; �)) =

1

4

(w

(0;0;0)

� w

(0;0;1)

+ w

(1;0;0)

� w

(1;0;1)

);

f((�; 3; �)) =

1

4

(w

(0;0;0)

� {w

(0;0;1)

� w

(1;0;0)

+ {w

(1;0;1)

);

f((�; �; 0)) =

1

4

(w

(0;0;0)

+ w

(0;0;1)

+ w

(0;0;2)

);

f((�; �; 1)) =

1

4

(w

(0;0;0)

+ e

2�{=3

w

(0;0;1)

+ e

4�{=3

w

(0;0;2)

);

f((0; 0; �)) =

1

4

(w

(0;0;0)

+ w

(0;1;0)

+ w

(0;2;0)

+ w

(0;3;0)

+w

(1;0;0)

+ w

(1;1;0)

+ w

(1;2;0)

+ w

(1;3;0)

);

f((0; 1; 1)) =

1

4

(w

(0;0;0)

+ e

2�{=3

w

(0;0;1)

+ e

4�{=3

w

(0;0;2)

+{w

(0;1;0)

+ {e

2�{=3

w

(0;1;1)

+ {e

4�{=3

w

(0;1;2)

�w

(0;2;0)

� e

2�{=3

w

(0;2;1)

� e

4�{=3

w

(0;2;2)

�{w

(0;3;0)

� {e

2�{=3

w

(0;3;1)

� {e

4�{=3

w

(0;3;2)

+w

(1;0;0)

+ e

2�{=3

w

(1;0;1)

+ e

4�{=3

w

(1;0;2)

31

+{w

(1;1;0)

+ {e

2�{=3

w

(1;1;1)

+ {e

4�{=3

w

(1;1;2)

�w

(1;2;0)

� e

2�{=3

w

(1;2;1)

� e

4�{=3

w

(1;2;2)

�{w

(1;3;0)

� {e

2�{=3

w

(1;3;1)

� {e

4�{=3

w

(1;3;2)

): (4.1)

Note that the di�erence between the sums for f((0; �; �)) and f((1; �; �)) is that the

Walsh coe�cients are subtracted rather than added. In general, when we have a �xed

character p in the j-th position in the schema, the corresponding sum in the transform

has a phase of e

2�p=k

j

.

It is straightforward to make a general theorem from these observations.

Theorem 6 Consider a schema with m �xed characters p

i

at positions j

i

. Then the

average of f over that schema is

Y

q

k

�1=2

q

X

l

1

X

l

2

. . .

X

l

m

e

2�{(l

1

p

1

=k

j

1

+l

2

p

2

=k

j

2

+...+l

m

p

m

=k

j

m

)

w

(0;0;...;0;l

1

;0;...;0;l

2

;0;...;0;l

m

;0;...)

: (4.2)

Proof Recall that when we write f in terms of its generalized Walsh coe�cients, the

result has n sums, where n is the length of the strings. There is a sum for each of the

n characters in the string of the argument. Now, when we take the average of f over

a schema which has a � in the j-th position, only the terms that have no phase change

as we traverse the j-th dimension survive; this means that only the generalized Walsh

coe�cients with a 0 in the j-th position survive in the �nal result.

32

We can also de�ne schemata in the space of real numbers, and take schema av-

erages using generalized Walsh coe�cients as before. These schemata are analogous

to the slices used in Goldberg (1990a) rather than the schemata for real parameters

de�ned in Wright (1991), and are a natural extension of schemata in �nite alphabets.

Example Consider a function f over (1;1; 3; 3; 3)-ary strings. Let (0.67,*,*,*,1)

refer to the set of strings whose �rst variable x

1

equals 0.67 and last variable x

5

equals

1. Then the average of the function f over that schema is

f((0:67; �; �; �; 1)) = 3

�3=2

1

X

j

1

=�1

2

X

j

5

=0

w

(j

1

;0;0;0;j

5

)

e

2�{(0:67j

1

+1j

5

=3)

: (4:3)

To get more familiar with using these generalizedWalsh coe�cients on real variables,

let us do some more schema averages:

f((�; �; �; �; �)) = 3

�3=2

w

(0;0;0;0;0)

;

f((�; �; �; �; 2)) = 3

�3=2

(w

(0;0;0;0;0)

+ e

2�{=3

w

(0;0;0;0;1)

+ e

4�{=3

w

(0;0;0;0;2)

);

f((0; �; �; �; �)) = 3

�3=2

1

X

j

1

=�1

w

(j

1

;0;0;0;0)

: (4.4)

This chapter has generalized the notion of schema used in analyzing genetic al-

gorithms of binary strings and showed how to use generalized Walsh functions and

transforms to compute schema averages. A method of comparing schema averages to

determine deception is given in the next chapter.

33

Chapter 5

Using Generalized Hadamard

Transforms to Detect Deception

5.1 Deception in Non-binary Strings

Hadamard transforms provide a convenient way of checking deceptive conditions in a

systematic manner (Homaifar, Qi, Fost, 1991; Homaifar, Qi, 1990). In this chapter,

the Hadamard transform will be generalized to non-binary strings.

Deception in functions over non-binary strings is qualitatively di�erent than de-

ception in functions over binary strings. In order to get full deception with binary

strings, all schemas of order n� 1 or less must point towards the complement of the

global optimum. With non-binary strings, all that is required is that all schemas

34

of order n � 1 or less point away from the global optimum. Mason uses this as his

de�nition of deception (Mason, 1991).

Example Consider a function f over a ternary string of length 3 whose global

optimum is at (2,2,2). Then some of the conditions necessary for deception are as

follows:

f((2; �; �)) < f((0; �; �)) or f((1; �; �));

f((2; 2; �)) < f((0; 0; �)) or f((0; 1; �)) or f((1; 0; �)) or f((1; 1; �));

f((2; 2; �)) < f((1; 2; �)) or f((0; 2; �));

f((2; 2; �)) < f((2; 0; �)) or f((2; 1; �));

f((1; 2; �)) < f((1; 0; �)) or f((1; 1; �)): (5.1)

Mutation for non-binary strings works di�erently than mutation for binary strings.

Some mutation operators, such as creeping mutation, mutate characters to nearby

characters. For example, using a 10-ary alphabet, the string (0,0,0) is much more

likely to be perturbed to (1,0,0) than (9,0,0). Similarly, mutations on a real number

might be implemented by adding noise with a gaussian distribution. If the �tness

function is not too discontinuous, then these kinds of mutations can work as a sort

of gradient descent to help convergence (Bledsoe, 1961). The analysis of how the

distribution of perturbations a�ects convergence is beyond the scope of this thesis

35

and overlaps the theory of simulated annealing (Kirkpatrick, Gelatt, & Vecci, 1983;

Szu & Hartley, 1987). Assuming that the algorithm uses localized perturbations, it

is reasonable to de�ne a fully deceptive function as a function whose order n � 1 or

less schemas point as far away from the global optima as possible. Now the deceptive

conditions become more straightforward:

f((0; �; �)) > f((1; �; �));

f((0; �; �)) > f((2; �; �));

f((0; 0; �)) > f((0; 1; �));

f((0; 0; �)) > f((0; 2; �));

f((0; 0; �)) > f((1; 0; �));

f((0; 0; �)) > f((1; 1; �));

f((0; 0; �)) > f((1; 2; �));

f((0; 0; �)) > f((2; 0; �));

f((0; 0; �)) > f((2; 1; �));

f((0; 0; �)) > f((2; 2; �)); (5.2)

and all permutations of the strings above.

36

5.2 Hadamard Transform

Consider the competition partition in which the �xed positions are at j

1

; j

2

; . . . ; j

p

,

where p is the order of the partition.

De�nition 6 (Generalized Hadamard Transform) De�ne the generalized Hadamard

transform matrix H as:

H = h

1

 h

2

 . . .
 h

p

; (5:3)

where
 is the tensor product:

0

B

B

B

@

a b

c d

1

C

C

C

A

0

B

B

B

@

e f

g h

1

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

ae af be bf

ag ah bg bh

ce cf de df

cg ch dg dh

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; (5:4)

and h

m

is de�ned as follows:

h

m

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 . . . 1

1 e

2�{=k

j

m

e

4�{=k

j

m

. . . e

(k

j

m

�1)2�{=k

j

m

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 e

(k

j

m

�1)2�{=k

m

e

(k

j

m

�1)4�{=k

m

. . . e

(k

j

m

�1)(k

j

m

�1)2�{=k

j

m

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (5:5)

The generalized Hadamard transform will be used in the next section to compute the

conditions for deception.

37

5.3 Detecting Deception

Now we make the important assumption that the global optimum is at (k

1

� 1; k

2

�

1; . . . ; k

n

� 1) and all schemas of order n� 1 or less must point to (0; 0; . . . ; 0). This

de�nition of deception requires that the lower-order schemata lead as far away from

the global optimum as possible. This di�ers from Mason's de�nition of deception,

which requires only that the lower-order schemata do not point to the global optimum.

Using this new de�nition, we can now de�ne the matrix M such that the deceptive

conditions for that partition become MW > 0, where

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1st row of H-2nd row of H

1st row of H-3rd row of H

.

.

.

1st row of H-last row of H

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; (5:6)

andW is the vector of generalizedWalsh coe�cients used in the competition partition.

Example Let w be the Walsh coe�cients for the �tness function f over (3,2,2)-

ary strings. Consider the competition partition (F; �; �), where F represents a �xed

position and * represents a wildcard character. Then

W = (w

(0;0;0)

; w

(1;0;0)

; w

(2;0;0)

)

T

;

H =

0

B

B

B

B

B

B

B

B

@

1 1 1

1 e

2�{=3

e

4�{=3

1 e

4�{=3

e

8�{=3

1

C

C

C

C

C

C

C

C

A

;

38

M =

0

B

B

B

@

0 1� e

2�{=3

1� e

4�{=3

0 1� e

4�{=3

1� e

8�{=3

1

C

C

C

A

: (5.7)

The condition that MW > 0 becomes the following:

(1� e

2�{=3

)w

(1;0;0)

+ (1� e

4�{=3

)w

(2;0;0)

> 0;

(1� e

4�{=3

)w

(1;0;0)

+ (1� e

8�{=3

)w

(2;0;0)

> 0: (5.8)

When we substitute function values for the Walsh coe�cients in the above expression,

we get

f((0; �; �)) > f((1; �; �));

f((0; �; �)) > f((2; �; �)); (5.9)

which are indeed the deceptive conditions corresponding to that partition.

Example Let us repeat the above calculations for the competition partition (F;D; F):

W = (w

(0;0;0)

; w

(0;0;1)

; w

(1;0;0)

; w

(1;0;1)

; w

(2;0;0)

; w

(2;0;1)

)

T

;

H =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 1 1 1

1 �1 1 �1 1 �1

1 1 e

2�{=3

e

2�{=3

e

4�{=3

e

4�{=3

1 �1 e

2�{=3

�e

2�{=3

e

4�{=3

�e

4�{=3

1 1 e

4�{=3

e

4�{=3

e

8�{=3

e

8�{=3

1 �1 e

4�{=3

�e

4�{=3

e

8�{=3

�e

8�{=3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

39

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 2 0 2 0 2

0 0 1� A 1�A 1�B 1�B

0 2 1� A 1 +A 1�B 1 + B

0 0 1� B 1�B 1�A 1�A

0 2 1� B 1 +A 1�A 1 + B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; (5.10)

where A = e

2�{=3

and B = e

�2�{=3

. MW > 0 gives

2w

(0;0;1)

+ 2w

(1;0;1)

+ 2w

(2;0;1)

> 0;

(1�A)w

(1;0;0)

+ (1� A)w

(1;0;1)

+ (1� B)w

(2;0;0)

+ (1�B)w

(2;0;1)

> 0;

2w

(0;0;1)

+ (1�A)w

(1;0;0)

+ (1 +A)w

(1;0;1)

+ (1� B)w

(2;0;0)

+

(1 +B)w

(2;0;1)

> 0;

(1�B)w

(1;0;0)

+ (1� B)w

(1;0;1)

+ (1� A)w

(2;0;0)

+ (1�A)w

(2;0;1)

> 0;

2w

(0;0;1)

+ (1�B)w

(1;0;0)

+ (1 +B)w

(1;0;1)

+ (1� A)w

(2;0;0)

+

(1 +A)w

(2;0;1)

> 0: (5.11)

Translated into function values, this gives the following set of inequalities:

f((0; �; 0)) > f((0; �; 1));

f((0; �; 0)) > f((1; �; 0));

f((0; �; 0)) > f((1; �; 1));

f((0; �; 0)) > f((2; �; 0));

40

f((0; �; 0)) > f((2; �; 1)); (5.12)

which are the deceptive conditions corresponding to the competition partition (F;D; F).

For a function to be deceptive at order p requires that all order p schemas lead as

far away to the global optimum as possible. Since there are

�

n

p

�

ways of choosing p

�xed positions among the n characters, there are that many competition partitions

at that order. In the above example, the function is deceptive at order 1 if it is

deceptive in the partitions (F,D,D), (D,F,D), and (D,D,F). For full deception, the

function must be deceptive at all orders between 1 and n� 1 inclusive. Mathematica

routines for computing all of the above are included in Appendix A.

This chapter has de�ned the deceptive conditions for functions over non-binary

alphabets. As mentioned in Chapter 2, deception is only one of the many reasons why

a genetic algorithm may fail. The next chapter focusses on another mode of failure:

the variances of schema �tness.

41

Chapter 6

Variance of Fitness

Although the schema theorem predicts the expected growth rate of a schema in a

population, the �nite population size introduces a sampling error that can lead to large

deviations from expectations and can a�ect GA convergence (Goldberg & Rudnick,

1991; Goldberg, Deb, & Clark, 1991; Rudnick & Goldberg, 1991; Scha�er, Eschelman,

& O�utt, 1991).

The full theory of how this sampling error a�ects GA behavior is beyond the scope

of this thesis. Only the methods for calculating the signal and noise in a competition

partition (Rudnick & Goldberg, 1991) will be extended to non-binary alphabets.

De�nition 7 (Index Set) The index set G(h) of a schema h is the set of indices

of the generalized Walsh coe�cients used to express the function average over the

schema h.

42

Example In the space of strings of length 3 taken from a ternary alphabet,

G((�; �; �)) = f(0; 0; 0)g;

G((0; �; �)) = G((1; �; �)) = G((2; �; �)) = f(0; 0; 0); (1; 0; 0); (2; 0; 0)g = (�; 0; 0);

G((0; 0; �)) = G((1; 2; �)) = (�; �; 0): (6.1)

This notation helps to make the de�nitions of signal and noise clearer and more

compact.

De�nition 8 (Collateral Noise) The collateral noise �

h

for a schema h is de�ned

by the following:

�

2

h

= var(f(h)) =

1

jhj

X

�

�

�

�

�

f(x)�

1

jhj

X

f(y)

�

�

�

�

�

2

;

=

1

jhj

X

jf(x)j

2

�

�

�

�

�

�

1

jhj

X

f(x)

�

�

�

�

�

2

;

=

D

f(x)

2

E

h

� hf(x)i

2

h

: (6.2)

hf(x)i

h

indicates the average of f(x) where x ranges over schema h, hf

2

(x)i

h

indicates

the average of f

2

(x) over h, and jhj is the number of individuals represented by schema

h.

This de�nition di�ers from Rudnick and Goldberg (1991), which de�nes the collateral

noise as �

2

h

.

De�nition 9 (Partition Signal) The signal S(J) of a competition partition J is

43

de�ned as

S

2

(J) =

D

jf(h)j

2

E

J

� jhf(h)i

J

j

2

: (6:3)

hf(h)i

J

denotes the average of schema averages f(h) where h runs over J . hjf(h)j

2

i

J

denotes the average of the absolute value squares of schema averages in the competi-

tion partition J .

The �rst term in Equation 6.3 can be written as

D

jf(h)j

2

E

J

=

1

jJ j

X

h�J

jf(h)j

2

; (6:4)

where jJ j is the number of schemata in J. Substituting the expression for f(h) in

terms of generalized Walsh coe�cients gives

D

jf(h)j

2

E

J

=

1

jJ j

Y

m

k

�1

m

X

h�J

�

�

�

�

�

�

X

~|�G(h)

w

~|

	

(

~

k)

~|

(h)

�

�

�

�

�

�

2

: (6:5)

Expanding the quadratic yields

D

jf(h)j

2

E

J

=

1

jJ j

Y

m

k

�1

m

X

h�J

X

~|;

~

l�G(h)

w

~|

w

~

l

	

(

~

k)

~|	

~

l

(h); (6:6)

where j	 l = (j

1

� l

1

mod k

1

; j

2

� l

2

mod k

2

; . . . ; j

n

� l

n

mod k

n

). Due to the orthog-

onality of the generalized Walsh functions, this reduces to

D

jf(h)j

2

E

J

=

1

jJ j

Y

m

k

�1

m

X

~|�G(h)

jw

~|

j

2

: (6:7)

The second term in Equation 6.3 reduces to the following product:

jhf(h)i

J

j

2

=

Y

m

k

�1

m

jw

0

j

2

: (6:8)

44

Thus, Equation 6.3 simpli�es to:

S

2

(J) =

X

~|�G(J)

(jw

~|

j

2

� jw

0

j

2

);

=

X

~|�G(J)�f0g

jw

~|

j

2

: (6.9)

Example Consider (3,3,3)-ary strings and the competition partition J = (F; F; �).

The square of the partition signal of J is

S

2

(J) = jw

(0;1;0)

j

2

+ jw

(0;2;0)

j

2

+jw

(1;0;0)

j

2

+ jw

(1;1;0)

j

2

+ jw

(1;2;0)

j

2

+jw

(2;0;0)

j

2

+ jw

(2;1;0)

j

2

+ jw

(2;2;0)

j

2

: (6.10)

De�nition 10 (Partition RMS Noise) The root-mean-squared noise C(J) of a

competition partition J is de�ned as the root-mean-square of the collateral noises

for each of the schema h in the partition.

C

2

(J) =

D

�

2

h

E

J

(6:11)

In Chapter 3, there were some examples (3.13,3.14) of computing the hf(x)

2

i

h

term

in the expression for �

2

h

(6.2). These examples can be generalized to give the following

result. For the complete derivations for binary strings, see Goldberg & Rudnick (1991)

and Rudnick & Goldberg (1991).

�

2

h

=

Y

m

k

�1

m

X

(~|;

~

l)�G

2

	

(h)�G

2

(h)

w

~|

w

~

l

	

(

~

k)

~

l	~|

(h) (6:12)

45

G

2

(h) = G(h)�G(h), G

2

	

(h) = f(~|;

~

l) : ~|	

~

l�G(h)g, and ~|	

~

l = (j

1

� l

2

mod k

1

; j

2

�

l

2

mod k

2

; . . . ; j

n

� l

n

mod k

n

). As before, the o�-diagonal terms vanish, leaving

C

2

(J) =

X

~|�

~

G(J)

jw

~|

j

2

(6:13)

where

~

G(J) is the complement of the set G(J).

Example Consider again the above example using (3,3,3)-ary strings and the com-

petition partition J = (F; F; �). The square of the partition RMS noise of J is

C

2

(J) = jw

(0;0;1)

j

2

+ jw

(0;0;2)

j

2

+ jw

(0;1;1)

j

2

+ jw

(0;1;2)

j

2

+jw

(0;2;1)

j

2

+ jw

(0;2;2)

j

2

+ jw

(1;0;1)

j

2

+ jw

(1;0;2)

j

2

+jw

(1;1;1)

j

2

+ jw

(1;1;2)

j

2

+ jw

(1;2;1)

j

2

+ jw

(1;2;2)

j

2

+jw

(2;0;1)

j

2

+ jw

(2;0;2)

j

2

+ jw

(2;1;1)

j

2

+ jw

(2;1;2)

j

2

+jw

(2;2;1)

j

2

+ jw

(2;2;2)

j

2

: (6.14)

For large alphabets and fairly smooth �tness functions, we can use the alphabet-

size reduction described earlier to get a good approximation to the variances with

relatively little e�ort. For instance, the variance of Test Function 2 is

Z

1

0

(x

2

(1� x)

2

(1=2� x)

3

)

2

dx

�

�

Z

1

0

(x

2

(1� x)

2

(1=2� x)

3

)dx

�

2

= 1:734� 10

�7

: (6.15)

46

We can approximate the same calculation using the 7-ary reduction.

1

7

(jw

1

j

2

+ jw

2

j

2

+ jw

3

j

2

+ jw

4

j

2

+ jw

5

j

2

+ jw

6

j

2

) = 1:723� 10

�7

: (6:16)

This chapter has shown that the signal and noise calculations for functions over

binary strings can be generalized to non-binary strings as well. The signal-to-noise

calculations and the Hadamard transforms are tools which examine two independent

modes by which a genetic algorithm can fail to converge to the global optimum.

47

Chapter 7

Conclusion

This thesis has shown how the Walsh functions and many of the techniques that use

it can be generalized to non-binary alphabets in a natural and straightforward way.

This conclusion focuses on possible topics for future research that use generalized

Walsh functions.

Directions for future research using generalized Walsh functions and transforms

include generalizing more of the theory for binary strings, such as the nonuniform

Walsh-schema transform (Bridges & Goldberg, 1991), creating deceptive problems

(Liepins & Vose, 1990b; Liepins & Vose, 1991; Whitley, 1991a), operator-adjusted

Walsh coe�cients (Goldberg, 1989c), and the su�cient conditions for deception (Deb,

Goldberg & 1992).

Another possibility is a probabilistic approach towards deception. Checking for

48

deception requires evaluating the �tness function over every single point in the entire

space, and for this reason, it has never been done for anything but tractable prob-

lems or problems that were handmade to be di�cult. Given the empirical evidence

that smoother functions are easier to optimize, it seems possible that the probability

that a function is deceptive depends on the asymptotic behavior of the generalized

Walsh coe�cients. It would be useful to have either analytical results or a table of

probabilities that relate how quickly the coe�cients decay, the length of the string,

the cardinality, and the order of static deception. This approach might give a way

of determining which representation is the likeliest to work for a given problem, and

whether a GA is likely to solve the problem or not, using only knowledge about the

smoothness of the �tness function.

In the theory of nonlinear systems, there are two methods for �nding solutions.

The �rst is to make a linear approximation; the second is to use some symmetry

of the system to reduce the dimensionality of the problem. The current theory for

genetic algorithms is largely based on the �rst method; it makes predictions based on

a linearized model of the system at generation zero. As Grefenstette (1991) pointed

out, the validity of this linear approximation as time progresses is open to question.

Methods of analysis based on a symmetry of the system would be valid for any length

of time. N. Packard (personal communication, 1991) and this author have speculated

that a renormalization group technique such as that used in analyzing lattice processes

49

in physics could also be used for analyzing GAs. The genetic algorithm, not including

the user-de�ned �tness function, appears to have no fundamental length scale other

than the string length, which corresponds to the lattice size in physics. Also, the way

that low-order schemata combine to form higher-order schemata is reminiscent of a

phase transition. These two facts, along with some numerical experiments, suggest

that scaling does occur in some situations and a renormalization group approach

would be promising. A renormalization group approach would involve treating blocks

of characters in the string as a single character of higher cardinality, and then asking

what would a genetic algorithm with this new representation do. This thesis, which

provides a framework for a theory of genetic algorithms over non-binary strings, is a

step in that direction.

50

Appendix A

Mathematica 2.0 Programs

A.1 Generalized Walsh Functions Over k-ary Strings

k is the size of the alphabet

n is the maximum length of the strings

j is the index (in integer form) of the generalized Walsh function

x is the argument (in integer form) of the generalized Walsh function

Psi[k_Integer,n_Integer,j_Integer,x_Integer]:=

E^(2 Pi I IntegerDigits[j,k,n].IntegerDigits[x,k,n] / k)/

Sqrt[k^n]

51

Example From the ternary alphabet and strings of length two example in the text

above, we evaluate the fourth Walsh function at position two.

In[3]:= Psi[3,2,4,2]

(-2 I)/3 Pi

E

Out[3]= ------------

3

A.2 Generalized Walsh Functions Over More Ar-

bitrary Strings

k is a list of the sizes of the alphabet used in each character

j is the index (in vector form) of the generalized Walsh function

x is the argument (in vector form) of the generalized Walsh function

Psi[k_List,j_List,x_List]:=

E^(2 Pi I Plus @@ MapThread[#1 #2/#3 &, {j, x, k}])/

Sqrt[Times@@k]

52

Example Consider the set of strings with length two. The �rst character is chosen

from a binary alphabet, and the second from a ternary alphabet. Evaluate the (0,2)

Walsh function at position (1,2).

In[6]:= Psi[{2,3},{0,2},{1,2}]

(2 I)/3 Pi

E

Out[6]= -----------

Sqrt[6]

A.3 Generalized Fast Walsh Transform Over k-

ary Strings

k is the size of the alphabet

l is the list of function values whose length is a power of k

GFWT[k_Integer,l_List]:=

Flatten[

53

Nest[Function[z,Table[E^-(2 Pi I j x/k),{j,0,k-1},{x,0,k-1}].z] /@

Partition[#,k]&,l,Round[Log[k,Length[l]]]]]/

Sqrt[k^Round[Log[k,Length[l]]]]

InverseGFWT[k_Integer,l_List]:=

Flatten[

Nest[Function[z,Table[E^(2 Pi I j x/k),{j,0,k-1},{x,0,k-1}].z] /@

Partition[#,k]&,l,Round[Log[k,Length[l]]]]]/

Sqrt[k^Round[Log[k,Length[l]]]]

Example Create a list of 9 random numbers, �nd the transform for a ternary

alphabet, and then untransform the data to recover the original 9 numbers.

In[3]:= Table[Random[],{9}]

Out[3]= {0.177361, 0.503785, 0.387824, 0.615398, 0.254133, 0.488114,

> 0.00850412, 0.539387, 0.788743}

In[4]:= GFWT[3,%] //N

54

Out[4]= {1.25442, -0.226577 + 0.106052 I, -0.226577 - 0.106052 I,

> -0.0927234 - 0.00606561 I, -0.0247775 - 0.362999 I,

> -0.0170897 - 0.156521 I, -0.0927234 + 0.00606561 I,

> -0.0170897 + 0.156521 I, -0.0247775 + 0.362999 I}

In[5]:= InverseGFWT[3,%] //N //Chop

Out[5]= {0.177361, 0.503785, 0.387824, 0.615398, 0.254133, 0.488114,

> 0.00850412, 0.539387, 0.788743}

A.4 Generalized Fast Walsh Transform Over More

Arbitrary Strings

k is a list of the sizes of the alphabets in the string

l is the list of function values whose length is a the product of

the sizes of the alphabets

55

GFWT[k_List,l_List]:=

Flatten[Fold[

Function[z, Table[E^-(2 Pi I i j/#2),{i,0,#2-1},{j,0,#2-1}] . z] /@

Partition[#1,#2] &, l, Reverse[k]]]/

Sqrt[Times@@k]

InverseGFWT[k_List,l_List]:=

Flatten[Fold[

Function[z, Table[E^(2 Pi I i j/#2),{i,0,#2-1},{j,0,#2-1}] . z] /@

Partition[#1,#2] &, l, Reverse[k]]]/

Sqrt[Times@@k]

Example Create a list of 6 random numbers and transform it over strings of length

2 whose �rst character is chosen from a binary alphabet and whose second character

is chosen from a ternary alphabet.

In[3]:= Table[Random[],{6}]

56

Out[3]= {0.222531, 0.656238, 0.587434, 0.827656, 0.34676, 0.514834}

In[4]:= GFWT[{2,3},%] //N

Out[4]= {1.28821, -0.000998969 + 0.0350975 I, -0.000998969 - 0.0350975 I,

> -0.0910589, -0.325032 - 0.0837492 I, -0.325032 + 0.0837492 I}

In[5]:= InverseGFWT[{2,3},%] //N //Chop

Out[5]= {0.222531, 0.656238, 0.587434, 0.827656, 0.34676, 0.514834}

A.5 Converting Schema Averages to Walsh Co-

e�cients

k is a list containing the sizes of the alphabets

schema is the schema which we want to evaluate the fitness of.

D is the don't-care symbol

w is the name of the generalized Walsh coefficients

SchemaToWalsh[k_List,schema_List,w_]:=

57

Sum @@

Prepend[

Delete[MapIndexed[{j[#2[[1]]],0,#1-1}&,k],Position[schema,D]],

w[(j[#]&/@Range[Length[k]]).

Reverse[FoldList[Times,1,Reverse[Rest[k]]]]]

E^(2 Pi I Plus @@

MapIndexed[j[#2[[1]]] schema[[#2[[1]]]]/#1 &,k])

/. (j[#] ->0 &/@ Flatten[Position[schema,D]])

] / Sqrt[Times@@k]

Example Consider strings of length 3 whose characters are taken from alphabets

with cardinality 2, 4, and 2. Calculate several schema averages in terms of the

generalized Walsh coe�cients.

In[14]:= SchemaToWalsh[{2,4,2},{D,D,D},w]

w[0]

Out[14]= ----

4

58

In[15]:= SchemaToWalsh[{2,4,2},{0,D,D},w]

w[0] + w[8]

Out[15]= -----------

4

In[16]:= SchemaToWalsh[{2,4,2},{1,D,D},w]

w[0] - w[8]

Out[16]= -----------

4

In[17]:= SchemaToWalsh[{2,4,2},{0,0,D},w]

w[0] + w[2] + w[4] + w[6] + w[8] + w[10] + w[12] + w[14]

Out[17]= --

4

In[18]:= SchemaToWalsh[{2,4,2},{D,0,D},w]

59

w[0] + w[2] + w[4] + w[6]

Out[18]= -------------------------

4

A.6 Hadamard Transforms

(* tensor[a,b] returns the tensor produce of a and b *)

tensor[a_,b_]:=With[{s1=Length[a],s2=Length[b]},

Table[a[[Ceiling[i/s2],Ceiling[j/s2]]]

b[[Mod[i-1,s2]+1,Mod[j-1,s2]+1]],{i,s1 s2},{j,s1 s2}]]

(* returns a Hadamard matrix for a single character *)

h[k_]:= Table[E^(2 Pi I i j/k),{i,0,k-1},{j,0,k-1}]

(* returns a Hadamard matrix for a set of characters *)

H[k_List]:= Fold[tensor[#1,#2]&,h[First[k]],h/@Rest[k]]

(* returns the matrix for finding deceptive conditions *)

60

M[k_List]:= With[{hmat=H[k]},

Table[hmat[[1]]-hmat[[i]],{i,2,Length[hmat]}]]

A.7 Determining Deception Using Hadamard Trans-

forms

(* returns a list of Walsh coefficients in the partition *)

(* specified by the schema *)

WalshList[k_List,schema_List,w_]:=

Flatten[

Table @@

Prepend[

Delete[MapIndexed[{j[#2[[1]]],0,#1-1}&,k],Position[schema,D]],

w[(j[#]&/@Range[Length[k]]).

Reverse[FoldList[Times,1,Reverse[Rest[k]]]]]

/. (j[#] ->0 &/@ Flatten[Position[schema,D]])

]]

(* returns the Walsh sums needed for the deceptive conditions *)

(* F=fixed position, D = don't care *)

Decep[k_List,schema_List,w_]:=

61

M[k[[#[[1]]]]& /@ Position[schema,F]].WalshList[k,schema,w]

Example Consider a function over a (3,2,2)-ary alphabet and the competition parti-

tion (F,D,D). Decep[f3,2,2g,fF,D,Dg,w] returns a vector whose components must

all be positive for the function to be deceptive.

In[3]:= Decep[{3,2,2},{F,D,D},w]

(2 I)/3 Pi (-2 I)/3 Pi

Out[3]= {(1 - E) w[4] + (1 - E) w[8],

(-2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[4] + (1 - E) w[8]}

Example Now we consider the above function over the competition partition (F,F,D).

In[4]:= Decep[{3,2,2},{F,F,D},w]

62

Out[4]= {2 w[2] + 2 w[6] + 2 w[10],

(2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[4] + (1 - E) w[6] +

(-2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[8] + (1 - E) w[10],

(2 I)/3 Pi (2 I)/3 Pi

> 2 w[2] + (1 - E) w[4] + (1 + E) w[6] +

(-2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[8] + (1 + E) w[10],

(-2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[4] + (1 - E) w[6] +

(2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[8] + (1 - E) w[10],

63

(-2 I)/3 Pi (-2 I)/3 Pi

> 2 w[2] + (1 - E) w[4] + (1 + E) w[6] +

(2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[8] + (1 + E) w[10]}

A.8 Determining Deception to Speci�ed Order

GenDecep[k_List,order_,w_]:=

Flatten[

Decep[k,#,w]& /@

Permutations[Join[Table[F,{order}],

Table[D,{Length[k]-order}]]]]

Example Consider the function used in the previous example. In order for the func-

tion to be deceptive at the 1-st order, all the components of GenDecep[f3,2,2g,1,w]

must be positive.

In[5]:= GenDecep[{3,2,2},1,w]

64

(2 I)/3 Pi (-2 I)/3 Pi

Out[5]= {(1 - E) w[4] + (1 - E) w[8],

(-2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[4] + (1 - E) w[8], 2 w[2], 2 w[1]}

A.9 Fully Deceptive Conditions

FullDecep[k_List,w_]:=

Flatten[Table[GenDecep[k,q,w],{q,1,Length[k]-1}]]

Example Consider again a function over strings taken from a (3,2,2)-ary alphabet.

Then the conditions for full deception are that each of the components of the vector

returned by FullDecep[f3,2,2g,w] are positive.

In[6]:= FullDecep[{3,2,2},w]

(2 I)/3 Pi (-2 I)/3 Pi

Out[6]= {(1 - E) w[4] + (1 - E) w[8],

65

(-2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[4] + (1 - E) w[8], 2 w[2], 2 w[1],

> 2 w[2] + 2 w[6] + 2 w[10],

(2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[4] + (1 - E) w[6] +

(-2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[8] + (1 - E) w[10],

(2 I)/3 Pi (2 I)/3 Pi

> 2 w[2] + (1 - E) w[4] + (1 + E) w[6] +

(-2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[8] + (1 + E) w[10],

(-2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[4] + (1 - E) w[6] +

66

(2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[8] + (1 - E) w[10],

(-2 I)/3 Pi (-2 I)/3 Pi

> 2 w[2] + (1 - E) w[4] + (1 + E) w[6] +

(2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[8] + (1 + E) w[10],

(2 I)/3 Pi

> 2 w[1] + 2 w[5] + 2 w[9], (1 - E) w[4] +

(2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[5] + (1 - E) w[8] +

(-2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[9], 2 w[1] + (1 - E) w[4] +

(2 I)/3 Pi (-2 I)/3 Pi

67

> (1 + E) w[5] + (1 - E) w[8] +

(-2 I)/3 Pi (-2 I)/3 Pi

> (1 + E) w[9], (1 - E) w[4] +

(-2 I)/3 Pi (2 I)/3 Pi

> (1 - E) w[5] + (1 - E) w[8] +

(2 I)/3 Pi (-2 I)/3 Pi

> (1 - E) w[9], 2 w[1] + (1 - E) w[4] +

(-2 I)/3 Pi (2 I)/3 Pi

> (1 + E) w[5] + (1 - E) w[8] +

(2 I)/3 Pi

> (1 + E) w[9], 2 w[1] + 2 w[3], 2 w[2] + 2 w[3],

> 2 w[1] + 2 w[2]}

68

Appendix B

Another Basis for Generalized

Transforms

As in Fourier series, we can use sines and cosines as well as complex exponentials as

our basis functions. The disadvantage of using sines and cosines as basis functions is

that the basic theorems become somewhat more complex. However, the advantage

is that all the Walsh coe�cients of a real function are real in this basis. We will

refer to the generalized Walsh functions and transforms using sines as cosines as real

generalized Walsh functions and transforms.

Since cos(x) =

e

{x

+e

�{x

2

and sin(x) =

e

{x

�e

�{x

2{

, one can convert between the gener-

alized Walsh coe�cients used in the previous sections to the real generalized Walsh

coe�cients.

To start, consider a function over strings of length 1. There are two cases for the

transform itself, one for even k and one for odd k.

69

Odd k The real generalized Walsh transform is given by

a

0

= w

0

;

a

j

=

w

j

+ w

k�j

2

1=2

for j 6= 0;

b

j

=

{

2

1=2

(w

j

� w

k�j

): (B.1)

The inverse real generalized Walsh transform is given by the following:

f(x) =

1

k

1=2

(a

0

+

k�1

2

X

j=1

(a

j

2

1=2

cos(2�jx=k) + b

j

2

1=2

sin(2�jx=k))): (B:2)

Of course, one can express the a

j

s and b

j

s in terms of the inner products of the cosines

and sines with the function f :

a

0

=

1

k

1=2

k�1

X

x=0

f(x);

a

j

=

2

1=2

k

1=2

k�1

X

x=0

cos(2�jx=k)f(x) for j 6= 0;

b

j

=

2

1=2

k

1=2

k�1

X

x=0

sin(2�jx=k)f(x): (B.3)

Even k

a

0

= w

0

;

a

k=2

= 2

�1=2

w

k=2

;

a

j

=

w

j

+ w

k�j

2

1=2

for j 6= 0 and j 6= k=2;

b

j

=

{

2

1=2

(w

j

� w

k�j

): (B.4)

70

f(x) =

1

k

1=2

(a

0

+

k

2

�1

X

j=1

(a

j

2

1=2

cos(2�jx=k) + b

j

2

1=2

sin(2�jx=k))

+ 2

1=2

cos(�x)a

k=2

): (B.5)

Again, the coe�cients can be expressed in terms of the inner product of sines and

cosines with f(x):

a

0

=

1

k

1=2

k�1

X

x=0

f(x);

a

j

=

2

1=2

k

1=2

k�1

X

x=0

cos(2�jx=k)f(x) for j 6= 0;

b

j

=

2

1=2

k

1=2

k�1

X

x=0

sin(2�jx=k)f(x): (B.6)

The proof that the inverse real generalizedWalsh transform of the real generalized

Walsh transform of a function is the function itself comes from substituting the ex-

pressions for a

j

and b

j

(B.1,B.4) into the expressions for f(x) (B.2,B.5) and verifying

that it indeed is the inverse generalized Walsh transform (3.7).

There are two ways of generalizing the above method to n dimensions. The �rst

is simply to take the Fourier transform along each dimension as we did before, but to

use sines and cosines as we have done above. The problem with using this method is

mainly notational complexity, although the idea is just as simple as the generalized

Walsh transforms we discussed before; all we are doing is taking the Fourier transform

in an n-dimensional space, using sines and cosines. As this �rst method of generalizing

the sine and cosine transform becomes cumbersome for long strings, it will not be

71

pursued any further in this thesis.

The second method of generalizing the Walsh transform using sines and cosines

works as follows:

a

~

0

=

Y

m

k

�1=2

m

X

~x

f(~x);

a

~|

= 2

1=2

Y

m

k

�1=2

m

X

x

1

;x

2

;...;x

n

cos(2�(j

1

x

1

=k

1

+ j

2

x

2

=k

2

+ . . . j

n

x

n

=k

n

)f(~x) for j 6= 0;

b

~|

= 2

1=2

Y

m

k

�1=2

X

x

1

;x

2

;...;x

n

cos(2�(j

1

x

1

=k

1

+ j

2

x

2

=k

2

+ . . . j

n

x

n

=k

n

)f(~x): (B.7)

f(~x) =

Y

m

k

�1=2

m

X

~|

fa

~

0

+ a

~|

2

1=2

cos(2�(j

1

x

1

=k

1

+ j

2

x

2

=k

2

+ . . . j

n

x

n

=k

n

))

+b

~|

2

1=2

sin(2�(j

1

x

1

=k

1

+ j

2

x

2

=k

2

+ . . . j

n

x

n

=k

n

))g: (B.8)

This method has the disadvantage that the Walsh functions in n dimensions is not just

the product of Walsh functions in one dimension. Explicitly, they are the following:

De�nition 11 (Real

~

k-ary Walsh Functions)

(

~

k)

0

(~x) =

Y

m

k

�1=2

m

;

(

~

k)

~|

(~x) = 2

1=2

Y

m

k

�1=2

m

cos(2 pi(j

1

x

1

=k

1

+ j

2

x

2

=k

2

+ . . . j

n

x

n

=k

n

)) for j 6= 0;

�

(

~

k)

~|

(~x) = 2

1=2

Y

m

k

�1=2

m

sin(2�(j

1

x

1

=k

1

+ j

2

x

2

=k

2

+ . . . j

n

x

n

=k

n

)): (B.9)

This transform also has the useful property that function averages over schema

with m �xed positions become sums over n�m positions in the transformed space.

Example Consider again a function f over strings of length 2 whose characters are

72

taken from a ternary alphabet. Some schemas averages in terms of the transform

coe�cients are

f(��) =

1

3

a

(0;0)

;

f(�0) =

1

3

(a

(0;0)

+ a

(0;1)

);

f(�1) =

1

3

(a

(0;0)

�

1

2

a

(0;1)

+

3

1=2

2

b

(0;1)

);

f(�2) =

1

3

(a

(0;0)

�

1

2

a

(0;1)

�

3

1=2

2

b

(0;1)

): (B.10)

Theorem 7 Consider a schema has m �xed characters p

i

at positions j

i

. Then the

average of f over that schema is

Y

q

k

�1=2

q

X

l

1

X

l

2

. . .

X

l

m

cos(2�(l

1

p

1

=k

j

1

+ l

2

p

2

=k

j

2

+ . . . + l

m

p

m

=k

j

m

))

a

(0;0;...;0;l

1

;0;...;0;l

2

;0;...;0;l

m

;0;...)

+ sin(2�(l

1

p

1

=k

j

1

+ l

2

p

2

=k

j

2

+ . . . + l

m

p

m

=k

j

m

))

b

(0;0;...;0;l

1

;0;...;0;l

2

;0;...;0;l

m

;0;...)

: (B.11)

73

References

Beauchamp, K. G. (1975). Walsh functions and their applications, Academic Press.

Bethke, A. D. (1981), Genetic algorithms as function optimizers (Doctoral disser-

tation, University of Michigan). Dissertation Abstracts International, 41(9),

3503B. (University Micro�lms No. 8106101).

Bledsoe, W. W. (1961). The use of biological concepts in the analytical study of

systems. Paper presented at the ORSA-TIMS National Meeting, San Francisco,

CA.

Bridges, C., Goldberg, D. E. (1989). A note on the nonuniform Walsh-schema trans-

form. TCGA Report No. 89004. Tuscaloosa, AL: University of Alabama, De-

partment of Engineering Mechanics, The Clearinghouse for Genetic Algorithms.

Das, R., & Whitley, D. (1991). The only challenging problems are deceptive: global

search by solving order-1 hyperplanes. Proceedings of the Fourth International

Conference on Genetic Algorithms, 166-173.

Davis, L. (1991). Bit-climbing, representational bias, and test suite design. Pro-

ceedings of the Fourth International Conference on Genetic Algorithms, 18-23.

Deb, K. & Goldberg, D. E. (1991). Analyzing Deception in Trap Functions. (IlliGAL

Report No. 91009). Urbana: University of Illinois, Illinois Genetic Algorithms

74

Laboratory.

Deb, K., & Goldberg, D. E. (1992). Su�cient conditions for deceptive and easy

binary functions. (IlliGAL Report No. 92001). Urbana: University of Illinois,

Illinois Genetic Algorithms Laboratory.

Davidor, Y. (1991). Epistasis variance: a viewpoint on GA-hardness. Foundations

of Genetic Algorithms, 23-35.

Forrest, S., & Mitchell, M. (1991). The performance of genetic algorithms on Walsh

polynomials: some anomalous results and their explanation. Proceedings of the

Fourth International Conference on Genetic Algorithms, 182-189.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive prob-

lem. Genetic Algorithms and Simulated Annealing, 74-88. Los Altos: Morgan

Kaufmann Publishers, Inc.

Goldberg, D. E. (1989a). Genetic algorithms in search, optimization, and machine

learning. Reading, MA: Addison-Wesley.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part I, a gentle

introduction. Complex Systems, 3, 129-152.

Goldberg, D. E. (1989c). Genetic algorithms andWalsh functions: Part II, deception

and its analysis. Complex Systems, 3, 153-171.

75

Goldberg, D. E. (1990a). Real-coded genetic algorithms, virtual alphabets, and

blocking. Complex Systems, 5(2), 139-168.

Goldberg, D. E. (1990b). Construction of higher-order deceptive functions using

low-order Walsh coe�cients. (IlliGAL Report No. 90002). Urbana: University

of Illinois, Illinois Genetic Algorithms Laboratory.

Goldberg, D. E., Deb, K., & Clark, J. H. (1991). Genetic Algorithms, noise, and

the sizing of populations. (IlliGAL Report No. 91010). Urbana: University of

Illinois, Illinois Genetic Algorithms Laboratory.

Goldberg, D. E., Deb, K., & Horn, J. (1992). Massive multimodality, deception, and

genetic algorithms. (IlliGAL Report No. 92005). Urbana: University of Illinois,

Illinois Genetic Algorithms Laboratory.

Goldberg, D. E., & Rudnick, M. (1991). Genetic algorithms and the variance of

�tness. Complex Systems, 5, 265-278.

Grefenstette, J. J. (1991). Building block hypothesis considered harmful. Genetic

Algorithms Digest [email journal], 5(19).

Hart, W. & Belew, R. Optimizing an arbitrary function is hard for the genetic

algorithm. Proceedings of the Fourth International Conference on Genetic Al-

gorithms, 190-195.

76

Holland, J. H. (1975). Adaption in natural and arti�cial systems. Ann Arbor, MI:

University of Michigan Press.

Homaifar, A., Qi, X., & Fost, J. (1991). Analysis and design of a general GA de-

ceptive problem, Proceedings of the Fourth International Conference on Genetic

Algorithms, 196-203.

Homaifar, A., & Qi, X. (1990). Analysis of GAs deception by Hadamard transform.

IASTED International SymposiumMachine Learning and Neural Networks. New

York.

Kargupta, H., Deb, K., & Goldberg, D. E. (1992). Ordering genetic algorithms and

deception. (IlliGAL Report No. 92006). Urbana: University of Illinois, Illinois

Genetic Algorithms Laboratory.

Kau�man, S. A. (1989). Adaption on rugged �tness landscapes. In D. L. Stein, ed.,

Lectures in the sciences of complexity, pp. 527-618. Reading: Addison-Wesley.

Kau�man, S. A. (1990). Requirements for evolvability in complex systems: orderly

dynamics and frozen components. Physica D, 42, 135-152.

Kau�man, S. & Levin, S. (1987). Towards a general theory of adaptive walks on

rugged landscapes. Journal of theoretical Biology 128, 11-45.

77

Kirkpatrick, S. , Gelatt, C., & Vecci, M. (1983). Optimization by simulated anneal-

ing. Science, 220, 671-680.

Liepins, G. E., & Vose, M. D. (1990a). Polynomials, basic sets, and deceptiveness

in genetic algorithms. Complex Systems, 5, 45-61.

Liepins, G. E., & Vose, M. D. (1990b). Representational issues in genetic algorithms.

Journal of Experimental and Theoretical Arti�cial Intelligence, 2, 101-115.

Liepins, G. E., & Vose, M. D. (1991). Deceptiveness and genetic algorithm dynamics.

Foundations of Genetic Algorithms, 36-50.

Lipsitch, M. (1991). Adaption on rugged landscapes generated by iterated local

interactions of neighboring genes. Proceedings of the Fourth International Con-

ference on Genetic Algorithms, 128-135.

Lighthill, M. J. (1959). Introduction to Fourier analysis and generalised functions.

New York: Cambridge University Press.

Manderick, B., de Weger, M., & Spiessens, P. (1991). The genetic algorithm and

the structure of the �tness landscape. Proceedings of the Fourth International

Conference on Genetic Algorithms, 143-150.

Mason, A. J. (1991). Partition coe�cients, static deception and deceptive problems

for non-binary alphabets. Proceedings of the Fourth International Conference

78

on Genetic Algorithms, 210-214.

Mitchell, M. & Forrest, S. (1991). What is deception anyway? And what does it

have to do with GAs? Unpublished manuscript.

Mitchell, M. Forrest, S., & Holland, J. (1991). The royal road for genetic algorithms:

�tness landscapes and GA performance. Unpublished manuscript.

Radcli�e, N. (1991). Forma analysis and random respectful mutations. Proceedings

of the Fourth International Conference on Genetic Algorithms, 222-229.

Rudnick, M. (1991). Genetic algorithms and the variance of �tness. Unpublished

Doctoral Dissertation, Oregon Graduate Institute, Department of Computer Sci-

ence and Engineering, Beaverton, OR.

Rudnick, M., & Goldberg, D. E. (1991). Signal, noise, and genetic algorithms.

(IlliGAL Report No. 91005). Urbana: University of Illinois, Illinois Genetic

Algorithms Laboratory.

Scha�er, J. D., Eshelman, L. J., & O�utt, D. (1991). Spurious correlations and pre-

mature convergence in genetic algorithms. Foundations of Genetic Algorithms,

102-112.

Sikora, R. (1991). Analysis of deception for permutation problems. Unpublished

manuscript.

79

Szu, H., & Hartley, R. (1987). Fast simulated annealing. Physics Letters A, 122

(3,4), 157.

Tanese, R. (1989). Distributed genetic algorithms for function optimization. (Doc-

toral Dissertation, University of Michigan). Dissertation Abstracts International,

50, 5180B. (University Micro�lms No. 90-01722). , Ann Arbor, MI).

Tolstov, G. P. (1962). Fourier series. Englewood Cli�s, NJ: Prentice-Hall, Inc.

Vose, M., & Liepins, G. (1991). Schema disruption. Proceedings of the Fourth

International Conference on Genetic Algorithms, 237-242.

Weinberger, E. (1987). A stochastic generalization of Eigen's model of natural se-

lection (Doctoral dissertation, New York University). Dissertation Abstracts In-

ternational, 48, 2000B. (University Micro�lms No. 87-22798)

Weinberger, E. (1988). A more rigorous derivation of some properties of uncorrelated

�tness landscapes [Letters to the editor]. Journal of Theoretical Biology, 134,

125-129.

Weinberger, E. (1990). Correlated and uncorrelated �tness landscapes and how to

tell the di�erence. Biological Cybernetics, 63, 325-336.

Whitley, D. (1991a). Fundamental principles of deception in genetic search. Foun-

dations of Genetic Algorithms, 221-241.

80

Whitley, D. (1991b). Deception, dominance and implicit parallelism (Technical Re-

port No. CS-91-120). Fort Collins: Colorado State University, Department of

Computer Science.

Wilson, S. (1991). GA-easy does not imply steepest-ascent optimizable. Proceedings

of the Fourth International Conference on Genetic Algorithms, 85-89.

Wright, A. H. (1991). Genetic algorithms for real parameter optimization. Foun-

dations of Genetic Algorithms, 205-218.

81

